Токоограничивающий резистор в базе транзистора. Расчет сопротивления резистора для светодиодов Упрощенные правила узлового анализа

Основным параметром, влияющим на долговечность светодиода, является электрический ток, величина которого строго нормируется для каждого типа LED-элемента. Одним из распространенных способов ограничения максимального тока является использование ограничительного резистора. Резистор для светодиода можно рассчитать без применения сложных вычислений на основании закона Ома, используя технические значения параметров диода и напряжение в цепи включения.

Особенности включения светодиода

Работая по одинаковому принципу с выпрямительными диодами, светоизлучающие элементы, тем не менее, имеют отличительные особенности. Наиболее важные из них:

  1. Крайне отрицательная чувствительность к напряжению обратной полярности. Светодиод, включенный в цепь с нарушением правильной полярности, выходит из строя практически мгновенно.
  2. Узкий диапазон допустимого рабочего тока через p-n переход.
  3. Зависимость сопротивления перехода от температуры, что свойственно большинству полупроводниковых элементов.

На последнем пункте следует остановиться подробнее, поскольку он является основным для расчета гасящего резистора. В документации на излучающие элементы указывается допустимый диапазон номинального тока, при котором они сохраняют работоспособность и обеспечивают заданные характеристики излучения. Занижение величины не является фатальным, но приводит к некоторому снижению яркости. Начиная с некоторого предельного значения, прохождение тока через переход прекращается, и свечение будет отсутствовать.

Превышение тока сначала приводит к увеличению яркости свечения, но срок службы при этом резко сокращается. Дальнейшее повышение приводит к выходу элемента из строя. Таким образом, подбор резистора для светодиода преследует цель ограничить максимально допустимый ток в наихудших условиях.

Напряжение на полупроводниковом переходе ограничено физическими процессами на нем и находится в узком диапазоне около 1-2 В. Светоизлучающие диоды на 12 Вольт, часто устанавливаемые на автомобили, могут содержать цепочку последовательно соединенных элементов или ограничительную схему, включенную в конструкцию.

Зачем нужен резистор для светодиода

Использование ограничительных резисторов при включении светодиодов является пусть и не самым эффективным, зато самым простым и дешевым решением ограничить ток в допустимых пределах. Схемные решения, которые позволяют с высокой точностью стабилизировать ток в цепи излучателей достаточно сложны для повторения, а готовые имеют высокую стоимость.

Применение резисторов позволяет выполнять освещение и подсветку своими силами. Главное при этом – умение пользоваться измерительными приборами и минимальные навыки пайки. Грамотно рассчитанный ограничитель с учетом возможных допусков и колебаний температуры способен обеспечить нормальное функционирование светодиодов в течении всего заявленного срока службы при минимальных затратах.

Параллельное и последовательное включение светодиодов

С целью совмещения параметров цепей питания и характеристик светодиодов широко распространены последовательное и параллельное соединение нескольких элементов. У каждого типа соединений есть как достоинства, так и недостатки.

Параллельное включение

Достоинством такого соединения является использование всего одного ограничителя на всю цепь. Следует оговориться, что данное достоинство является единственным, поэтому параллельное соединение практически нигде не встречается, за исключением низкосортных промышленных изделий. Недостатки таковы:

  1. Мощность рассеивания на ограничительном элементе растет пропорционально количеству параллельно включенных светодиодов.
  2. Разброс параметров элементов приводит к неравномерности распределения токов.
  3. Перегорание одного из излучателей ведет к лавинообразному выходу из строя всех остальных ввиду увеличения падения напряжения на параллельно включенной группе.

Несколько увеличивает эксплуатационные свойства соединение, где ток через каждый излучающий элемент ограничивается отдельным резистором. Точнее, это является параллельным соединением отдельных цепей, состоящих из светодиодов с ограничительными резисторами. Основное достоинство – большая надежность, поскольку выход из строя одного или нескольких элементов никаким образом не отражается на работе остальных.

Недостатком является тот факт, что из-за разброса параметров светодиодов и технологического допуска на номинал сопротивлений яркость свечения отдельных элементов может сильно различаться. Такая схема содержит большое количество радиоэлементов.

Параллельное соединение с индивидуальными ограничителями находит применение в цепях с низким напряжением, начиная с минимального, ограниченного падением напряжения на p-n переходе.


Последовательное включение

Последовательное включение излучающих элементов получило самое широкое распространение, поскольку несомненным достоинством последовательной цепи является абсолютное равенство тока, проходящего через каждый элемент. Поскольку ток через единственный ограничительный резистор и через диод одинаков, то и рассеиваемая мощность будет минимальной.

Существенный недостаток – выход из строя хотя бы одного из элементов приведет к неработоспособности всей цепочки. Для последовательного соединения требуется повышенное напряжение, минимальное значение которого растет пропорционально количеству включенных элементов.


Смешанное включение

Использование большого количества излучателей возможно при выполнении смешанного соединения, когда используют несколько параллельно включенных цепочек, и последовательного соединения одного ограничительного резистора и нескольких светодиодов.

Перегорание одного из элементов приведет к неработоспособности только одной цепи, в которой установлен данный элемент. Остальные будут функционировать исправно.

Формулы расчета резистора

Расчет сопротивления резистора для светодиодов базируется на законе Ома. Исходными параметрами для того, как рассчитать резистор для светодиода, являются:

  • напряжение цепи;
  • рабочий ток светодиода;
  • падение напряжения на излучающем диоде (напряжение питания светодиода).

Величина сопротивления определяется из выражения:

где U – падение напряжения на резисторе, а I – прямой ток через светодиод.

Падение напряжения светодиода определяют из выражения:

U = Uпит – Uсв,

где Uпит – напряжение цепи, а Uсв – паспортное падение напряжения на излучающем диоде.

Расчет светодиода для резистора дает значение сопротивления, которое не будет находиться в стандартном ряду значений. Брать нужно резистор с сопротивлением, ближайшим к вычисленному значению с большей стороны. Таким образом учитывается возможное увеличение напряжения. Лучше взять значение, следующее в ряду сопротивлений. Это несколько уменьшит ток через диод и снизит яркость свечения, но при этом нивелируется любое изменение величины питающего напряжения и сопротивления диода (например, при изменении температуры).

Перед тем как выбрать значение сопротивления, следует оценить возможное снижение тока и яркости по сравнению с заданным по формуле:

(R – Rст)R 100%

Если полученное значение составляет менее 5%, то нужно взять большее сопротивление, если от 5 до 10%, то можно ограничиться меньшим.

Не менее важный параметр, сказывающийся на надежности работы – рассеиваемая мощность токоограничительного элемента. Ток, проходящий через участок с сопротивлением, вызывает его нагрев. Для определения мощности, которая будет рассеиваться, используют формулу:

Используют ограничивающий резистор, чья допустимая мощность рассеивания будет превосходить расчетную величину.

Имеется светодиод с падением напряжения на нем 1.7 В с номинальным током 20 мА. Необходимо включить его в цепь с напряжением 12 В.

Падение напряжения на ограничительном резисторе составляет:

U = 12 – 1.7 = 10.3 В

Сопротивление резистора:

R = 10.3/0.02 = 515 Ом.

Ближайшее большее значение в стандартном ряду составляет 560 Ом. При таком значении уменьшение тока по сравнению с заданным составляет чуть менее 10%, поэтому большее значение брать нет необходимости.

Рассеиваемая мощность в ваттах:

P = 10.3 10.3/560 = 0.19 Вт

Таким образом, для данной цепи можно использовать элемент с допустимой мощностью рассеивания 0.25 Вт.

Подключение светодиодной ленты

Светодиодные ленты выпускаются на различное напряжение питания. На ленте располагается цепь из последовательно включенных диодов. Количество диодов и сопротивление ограничительных резисторов зависят от напряжения питания ленты.

Наиболее распространенные типы светодиодных лент предназначены для подключения в цепь с напряжением 12 В. Использование для работы большего значения напряжения здесь также возможно. Для правильного расчета резисторов необходимо знать ток, идущий через единичный участок ленты.

Увеличение длины ленты вызывает пропорциональное увеличение тока, поскольку минимальные участки технологически соединены параллельно. Например, если минимальная длина отрезка составляет 50 см, то на ленту 5м из 10 таких отрезков придется возросший в 10 раз ток потребления.


Итак, резистор … Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока , протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока . То есть, без резистора по цепи течет большой ток , встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток , проходящий через цепь. И Резистор . Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток , например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор — у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Кроме того, на резисторе происходит падение напряжения . Барьер не только задерживает ток , но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор . Включаем цепь без резистора (слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа) показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.


Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе .

Единица измерения сопротивления резистора

Основная характеристика резистора — сопротивление . Единица измерения сопротивления - Ом (Ohm, Ω). Чем больше сопротивление , тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.

Закон Ома для электрической цепи

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока (I) и Сопротивление(R).

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора , при котором ток от источника питания на 12В ограничится до 0,2. При этом считаем сопротивление лампочки равным 0.

V=I*R => R=V/I => R= 12В / 0,2А => R=60Ом

Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи , будет составлять 0,2А.

Характеристика мощности резистора

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока . При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Расчет мощности резистора

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток , проходящий по цепи(а значит и через резистор ), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе ). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

Соединение резисторов

Резисторы в цепях электрического тока имеют последовательное и параллельное соединение .

При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:


При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:


Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)

В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.

Представление об электричестве

Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.

Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
- Сколько тока втекает в узел, столько из него и вытекает
- Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
- Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
- Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.

Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.

Резистор

Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах . Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.

Закон Ома

Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул. Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока. Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение - это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды). Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.

Последовательное и параллельное соединение резисторов

Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:

В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:

В случае с 2-мя параллельно соединёнными резисторами, формулу можно записать так:

Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути
электрическому току, снижая общее сопротивление цепи.

Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R 3 =R 1 +R 2

В интернете есть удобные он-лайн калькуляторы для расчета и соединения резисторов.

Токоограничивающий резистор

Самая основная роль токоограничивающих резисторов - это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи. Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление. Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.

Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V 1 -V 2)/R
где (V 1 -V 2) является разностью напряжений до и после резистора.

Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).

Математически это запишется так:

Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.

Вы можете воспользоваться он-лайн калькулятором для .

Резисторы как делитель напряжения

Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:

Если оба резистора имеют одинаковое значение (R 1 =R 2 =R), то формулу можно записать так:

Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем:

Узловой анализ

Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.

Упрощенные правила узлового анализа

Определение узла

Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.

Определение ветви

Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.

Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.

Ток всегда течет от узла с более высоким напряжением на узел с более низким.

Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V 1 -V 2 =I 1 *(R 1)
Перенесем:
V 2 =V 1 -(I 1 *R 1)
Где V 2 является искомым напряжением, V 1 является опорным напряжением, которое известно, I 1 ток, протекающий от узла 1 к узлу 2 и R 1 представляет собой сопротивление между 2 узлами.

Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1 =(V 1 -V 2)/R 1

Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1 + I 3 =I 2

Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.

Расчет необходимой мощности резистора

При покупке резистора вам могут задать вопрос: "Резисторы какой мощности вы хотите?" или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.
Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор. Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I):
P=I*V
где ток измеряется в амперах (А), напряжение в вольтах (В) и Р - рассеиваемая мощность в ваттах (Вт)

На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Разновидности резисторов

Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.

Переменный резистор (потенциометр)

На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.

Они различаются по размеру и форме, но все работают одинаково. Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах. Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа). Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.

LDR (светочувствительные резисторы) и термисторы

Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.



Фоторезистор (LDR)

Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.

Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:

Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то V out будет соответственно от 0.005В до 4.975В.

Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.

Про определение номинала резистора используя цветовую маркировку можно почитать .

Светодиод - прибор, который при прохождении через него тока излучает свет.

В зависимости от типа используемого материала для изготовления прибора, светодиоды могут излучать свет различного цвета. Эти миниатюрные, надежные, экономичные приборы используются в технике, для освещения и в рекламных целях.

Светодиод обладает такой же вольтамперной характеристикой, как и обычный полупроводниковый диод. При этом при повышении прямого напряжения на светодиоде проходящий через него ток резко возрастает.

В законе, который мы только что упоминали, следует отметить, что мы никогда не используем сопротивление как таковое и никогда не входим в уравнение. Теперь мы переходим к другому существенному закону: Закон Ома, который описывает функционирование сопротивления.

Существует более распространенная формула, которую вы увидите очень часто. Или два других метода формулировки для расчета интенсивности или сопротивления. Да, это немного раздражает, разве это не так, поскольку нет ни одного слова в текущем слове? К сожалению, на нас работает 100 лет, поэтому просто нести с собой. Возьмем резистор 3 Ом с током 0, 5 ампер. . Закон Ома имеет важное значение и заслуживает дальнейшего изучения. Мы предложим ряд новых сопротивлений, интенсивностей и напряженности, и мы будем использовать их для решения неизвестного.

Например, для зеленого светодиода типа WP710A10LGD компании Kingbright при изменении приложенного прямого напряжения от 1,9 В до 2 В ток меняется в 5 раз и достигает 10 мА. Поэтому при прямом подключении светодиода к источнику напряжения при небольшом изменении напряжения ток светодиода может возрасти до очень большого значения, что приведет к сгоранию p-n перехода и светодиода.

Если вы работаете парами с другом, спросите друг друга и проверьте свои ответы! Есть также онлайн-калькуляторы, против которых вы можете измерить себя. Наша диаграмма немного загружена, но мы почти закончили. Наконец, последний фрагмент головоломки. Поэтому есть веские причины, чтобы хотеть контролировать яркость, если у вас низкий заряд батареи, но вы хотите сохранить свет одновременно. Указанный выше технический лист показывает это. Вы видите самый правый столбец?

Очень важно использовать законы, которые вы только что узнали на практике, и именно поэтому мы будем реагировать на новую викторину. Решите проблемы, используя приведенные выше диаграммы. На самом деле есть онлайн-калькуляторы, которые могли бы вам помочь, только цель обучения электронике - выполнять вычисления даже на необитаемом острове.

Осуществлена с применением букв и цифр, с помощью которых можно определить качественные характеристики устройств.

Поэтому при параллельном включении светодиодов обычно к каждому прибору последовательно подключают свой ограничивающий резистор. Расчет сопротивления и мощности такого резистора ничем не отличается от ранее рассмотренного случая.

Вы не пострадали, не так ли? Какая интенсивность проходит через сопротивление 100 Ом? . Эта экспериментальная плата питалась от трех разных напряжений и использовала такое же сопротивление. Ответ заключается в использовании тока. Сопротивление не производит свет, а тепло. Эти напряжения и ток резистора теряются навсегда, как тепло, и бесполезны в нашей цепи. Поскольку бесполезно сжигать батарею, чтобы превратить ее в тепло, мы должны максимально уменьшить потребляемую энергию по сопротивлению и лучший способ добиться этого - поддерживать низкое напряжение.

При последовательном включении светодиодов необходимо включать приборы одного типа.

Кроме того, надо учитывать то, что напряжение источника должно быть не меньше суммарного рабочего напряжения всей группы светодиодов.

Расчет токоограничивающего резистора для светодиодов последовательного включения считаются также, как и раньше. Исключение состоит в том, что при вычислении вместо величины Uсв используется величина Uсв*N. В данном случае N - это количество включенных приборов.

Не рекомендуется идти ниже этого порога, поскольку прямое напряжение может меняться, резисторы и батареи также, и все эти небольшие отклонения, составляющие около 0, 2 В, ожидаемая интенсивность. Мы закончим, узнав еще одну деталь, которая появится в вашем наборе. Ну, это было не так уж и фантастично, ведь это даже очень распространено. Потенциометры действуют как регулируемые резисторы одним нажатием кнопки. Мы подробно обсудим потенциометры в предстоящем учебнике, поэтому рассмотрим это как небольшое введение!

Потенциометры, как и резисторы, имеют значение в омах, например, этот потенциометр составляет 2 кома, потенциометры имеют три контакта, два снаружи и один по центру. Центральный контакт, контакт курсора, иногда называется «очистителем» на английском языке.

Выводы:

  1. Светодиоды - широко распространенные приборы, используемые в технике, для освещения и рекламы.
  2. Во избежание выхода из строя светодиодов из-за их чувствительности к изменениям напряжения для них часто используют ограничивающие резисторы.
  3. Расчет значения сопротивления ограничивающего резистора делается на основе закона Ома.

Расчет резистора для подключения светодиодов на видео

Можно понять, почему при открытии потенциометра он буквально напоминает щетку стеклоочистителя! Пока контакт курсора перемещается от одного конца к другому, сопротивление между этим контактом и контактом слева или справа изменяется. Чем ближе контакт ползуна к боковому контакту, тем ниже сопротивление. Когда потенциометр повернут в крайнее левое положение, сопротивление между левым контактом и контактом курсора составляет 0 Ом, тогда как резистор между контактом курсора и правым контактом составляет 2 кома.

Когда потенциометр поворачивается в крайнее правое положение, происходит обратное. Сопротивление между двумя внешними контактами всегда одинаково. Сопротивление между контактом курсора и слева и справа меняется! Возьмем потенциометр 2 кома сверху, если кнопка центрирована, то какое сопротивление между контактом правого и левого? В центре это эквивалентно половине максимума, поэтому 1 коем.

(светоизлучающий диод) - излучает свет в тот момент, когда через него протекает электрический ток . Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Каково сопротивление между контактом ползунка и контактом справа? . Схематический символ потенциометра напоминает своеобразное сопротивление с центральной стрелкой, символизирующей контакт курсора. Маленькая стрелка влево указывает направление контакта курсора, когда потенциометр поворачивается по часовой стрелке показывает.

А если он расположен в центре? . Выберите текст, чтобы увидеть ответ. Но во-первых, откуда берутся эти 100 Ом? Можем ли мы не просто настроить потенциометр для достижения желаемого сопротивления? Поэтому у нас есть дополнительное сопротивление 100 Ом для его устранения. Это предотвращает падение сопротивления резистора ниже 100 Ом.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

Прежде чем мы начнем, некоторые определения

Ваууу, это был курс интенсивной математики. Мы вернемся к программному обеспечению и этим маленьким мигающим диодам в будущих учебниках. Вывод: никогда не подключайте живое питание к непрерывной батарее или источнику питания!

Конкретный пример: расчет сопротивления

Возьмем в качестве примера красный светодиод, приводимый в действие автомобильной батареей напряжением 12 вольт.

Расчет мощности резистора

Сопротивление колеблется от нескольких десятков Ватт до нескольких сотен.

Что касается постоянного тока , диод добавляется параллельно и шпиндель относительно светодиода. В переменном токе напряжение является как положительным, так и отрицательным. Когда ток положительный, светодиод загорается, а когда он отрицательный, он отключается. Здесь диод может поджариваться, потому что он не поддерживает высокое обратное напряжение. Диод будет добавлен так, что ток пройдет через него. Обратите внимание: ток, протекающий через резистор, сильнее, чем при работе светодиода.

  • V - напряжение источника питания
  • V LED - напряжение падения на светодиоде
  • I – рабочий ток светодиода

Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:


Компоненты и цветовые коды

Существует риск сцинтилляции. Сопротивление - это самый простой электронный компонент для измерения, понимания и интерпретации. Для некоторых это будет полный курс, чтобы открыть этот компонент, для других простых напоминаний. Из-за небольшого размера компонентов четкая маркировка на компоненте невозможна, цветовой код настроен, этот код связывает соответствующее цветное кольцо с каждой цифрой. кольцо может иметь различный смысл: число, множитель или допуски компонента.

Вот сводная таблица цветового кода. Вот пример сопротивления в наиболее распространенной форме. Чтение с использованием приведенной выше таблицы дает нам. Мы только что декодировали 4-кольцевой резистор, однако есть также резисторы с 5 или 6 кольцами, в этом случае кодирование выглядит следующим образом:. 5 колец: 3 значащие цифры, множитель, толерантность. 6 колец: 3 значащие цифры, множитель, допуски, температурный коэффициент.

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы () которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Сочетание нескольких резисторов последовательно, параллельно

Цветовой код и фотографии резисторов, которые мы видели до сих пор радиальных компонентов, требующих восприятия. Эта технология все меньше и меньше используется для использования на поверхностных компонентах. Наверху сопротивление 10 000 Ом и сопротивление 10 Ом. Эта маркировка несколько неоднозначна, но она была определена таким образом. Они используются, потому что их легче настроить роботами, чем ремешок. Чтобы выбрать сопротивление, необходимо рассчитать его значение, но также мощность, которую он должен рассеять, тогда необходимо будет выбрать допуск в соответствии с приложением.

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Мне остается выбирать толерантность к этому сопротивлению. Наиболее распространенные резисторы имеют допуск 5%, какой диапазон допуска для сопротивления 180 Ом? В зависимости от приложения может потребоваться более высокий уровень допуска, чтобы ограничить отклонение. Тогда есть 2 решения: - выберите сопротивление с более низким допуском. - измерение и сортировка сопротивлений более высокого допуска.

Электролюминесцентный диод представляет собой электронный компонент, способный излучать свет, когда он проходит электрический ток.

  • Они ничего не потребляют.
  • У них отличная жизнь.
  • Они очень нагреваются.
  • Они ничего не стоят.
Существуют разные формы и цвета. Физический принцип относительно сложный.

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из подобрать не получается, то необходимо взять ближайшее большее сопротивление . В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Ну, хватит блабла, чтобы попрактиковаться! Электроны находятся, например, в сваях. Не так быстро! Знаете, мы еще не подошли к перечитанной части, где 90% класса выпадает из физики в колледже: интенсивность и напряжение. Чтобы сделать его простым, мы будем использовать аналогию с водой. Большое напряжение немного похоже на водопад: склон очень сильный, и циркулирует много воды.

Интенсивность на этот раз эквивалентна ширине вашего канала. Если ваш канал имеет ширину один метр, циркуляции воды не будет, даже если наклон очень высок Если есть 100 метров между двумя берегами вашего канала, в вашей мельнице будет много воды: интенсивность велика.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Вы видели маленькую синюю вспышку на видео? Она умеет выбрасывать. Сопротивление похоже на небольшую плотину, это позволит сохранить всю эту воду, каждое сопротивление имеет значение. Чтобы найти правильное сопротивление , вам нужно сделать расчет. в Интернете.

Либо вы смотрите на «спецификации» вашего светодиода, и он должен быть написан. В качестве индикатора: моя первая схема с плоской батареей загоралась нормально в течение 10 часов, затем все меньше и меньше. Вторая схема с батареей 9 В и резистором функционировала нормально в течение примерно 15 часов и отключилась через один день.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Если вы хотите больше статей, подобных этому, подождите! Эти ленты обеспечивают очень хорошие световые характеристики и, при условии правильного использования , практически не поддаются удачной эксплуатации. Будет видно, что использование при освещении автомобилей, например, должно учитывать определенное количество элементов, чтобы обеспечить безопасную работу для светодиодов и оборудования, которое их подает.

Между каждым блоком из 3 светодиодов находится конденсатор.


В типичной работе белый светодиод имеет пороговое напряжение 3 вольта при токе 20 мА. Для тех, кто интересуется расчетом, формула, используемая для определения значения сопротивления, такова. Поэтому мы имеем 3 светодиода последовательно, т.е. 9 вольт при 20 мА.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:


примечание: разделителем десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора = (U U F )/ I F

  • U – источник питания;
  • U F – прямое напряжение светодиода;
  • I F – ток светодиода (в миллиамперах).

Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем или соединения нескольких резисторов.