Онлайн расчет потерь напряжения в кабеле. Как рассчитать падение напряжения по длине кабеля в электрических сетях Онлайн расчеты падения напряжения

Итак, сегодня на повестке дня вопрос- как рассчитать сечение провода по допустимой потере напряжения.

И поможет нам в этом конечно же программа для электриков которая так и называется- “Электрик”.

Для тех кто не знает зачем делать расчет по потере напряжения- напомню, что при большой длине провода происходит падение напряжения на этом участке и до нагрузки может “дойти” совсем мало если неправильно выбрать сечение провода.

Обычно организации, которые делают капитальный ремонт квартир , обязательно смотрят на состояние электропроводки да и вообще всего электрооборудования и при производстве ремонта меняют ветхие и устаревшие провода, автоматы ну и т.д.

При этом надо правильно выбрать сечение новой проводки не только по условиям нагрева, но и по допустимой потере напряжения.

Представим такую ситуацию. Вам предстоит ремонт квартиры ну или если у вас дом- то дома.

Вы делаете ремонт электропроводки в доме и решили провести отдельный провод розетки в комнату. Но эта комната дальняя и длина провода получается порядка 30 метров до последней розетки.

Вы знаете что ничего мощного в розетки включать никогда не будете, максимум что можете включить- это утюг, телевизор, компьютер что в сумме набегает не более 3кВт и ток при такой мощности I=P/U=3000/220=13,64 А или если округлим то 14 ампер .

Согласно ПУЭ для такого тОка подходит сечение по меди в 1,5 кв.мм. Правда изоляция провода при этом будет около 60 гр.С при температуре в помещении +25, но правила допускают такую нагрузку:

А сейчас давайте посмотрим что нам скажет программа “Электрик” в нашем случае, мы узнаем сколько вольт “потеряется” на 30м провода и сколько “дойдет” до розетки.

Итак, открываем программу “Электрик” и нас интересует кнопка под названием “Потери”, жмем на нее:

Открывается вот такое окошко, где надо поставить точку на “Потери напряжения”:

В следующем открывшемся окне жмем на кнопку “Кабельные линии и другие провода”:

Ну и в очередном окне указываем необходимые параметры, перечисляю сверху- вниз:

Найти - Потери в %

Материал проводника - медные

Задано:

3- Мощность Р,кВт

4- Допустимые потери,% (в нашем примере это значение не важно, можете ставить тоже 4):

Далее надо выбрать индуктивное сопротивление, тут особо заморачиваться не надо, просто жмем на кнопку “Выбрать Xo” и в открывшемся окне нажимаем на значение “Кабель с виниловой или полихлорвинил изоляцией”:

Далее вносим значение косинуса фи, я выставил 0,85 так как у нас не чисто активная нагрузка и следующее значение вносим- длину провода 30м:

На этом все, сейчас можно узнать и результат, для этого жмем на кнопку “Расчет”:

И сейчас видим результат- целых 10 вольт напряжения “теряется” на участке медного провода сечением 1,5 кв.мм длиной 30 метров!

То есть на включенной нагрузке в 3 кВт будет уже не 220 вольт, а только 210. Для интереса можно посчитать сколько вольт “потеряется” если провод будет сечением 2,5 кв.мм:

Как видите- уже меньше, падение напряжения на участке длиной 30м составит уже всего 6 вольт.

Так же можно и наоборот узнать- какое надо сечение провода если вы знаете необходимое значение потери напряжения, для этого вверху окошка надо поставить точку на “Сечение в мм кв.” и внести нужные значения- я их обвел красным на картинке:

Вот таким образом можно с помощью программы “Электрик” определить не только значение падения напряжения на электропроводке но и узнать необходимое сечение для правильного выбора проводов при монтаже электропроводки.

Надеюсь эта информация вам поможет и не раз пригодится.

Буду рад вашим комментариям, если есть какие то технические вопросы- то прошу задавать их на форуме, именно там я отвечаю на вопросы- .

Подписывайтесь на мой видеоканал на Ютубе !

Смотрите еще много видео по электрике для дома!

В домашних условиях мы часто применяем переносные удлинители – розетки для временного (как правило остающееся на постоянно ) включения бытовых приборов: электронагревателя, кондиционера, утюга с большими токами потребления.
Кабель для этого удлинителя обычно выбирается по принципу – что попало подруку, а это не всегда соответствует необходимым электрическим параметрам.

В зависимости от диаметра (или от поперечного сечения провода в мм.кв.)провод обладает определенным электрическим сопротивлением для прохождения электрического тока.

Чембольше поперечное сечение проводника, тем меньше его электрическое сопротивление, тем меньше падение напряжения на нем. Соответственно меньше потеря мощности в проводе на его нагрев.

Проведем сравнительный анализпотери мощности на нагрев в проводе в зависимости от его поперечного сечения. Возьмем наиболее распространенные в быту кабели с паперечным сечением: 0,75; 1,5; 2,5 мм.кв. для двух удлинителей с длиной кабеля: L = 5 м. и L = 10м .

Возьмем для примера нагрузку в виде стандартного электронагревателя с электрическими параметрами:
— напряжение питания
U = 220 Воль т ;
— мощность электронагревателя
Р = 2,2 КВт = 2200 Вт ;
— ток потребления I = P / U = 2200 Вт / 220 В = 10 А.

Из справочной литературы, возьмем данные сопротивлений 1 метра провода разных поперечных сечений.

Приведена таблица сопротивлений 1 метра провода изготовленного из меди и алюминия.


Посчитаем потерю мощности, уходящей на нагрев для поперечного сечения провода S = 0,75 мм.кв. Провод изготовлен из меди.

Сопротивление 1 метра провода (из таблицы) R 1 = 0,023 Ом.
Длина кабеля L = 5 метров.
Длина провода в кабеле (туда и обратно)2 · L =2
· 5 = 10 метров .
Электрическое сопротивление провода в кабеле R = 2 · L · R 1 = 2 · 5 · 0,023 = 0,23 Ом.

Падение напряжения в кабеле при прохождении тока I = 10 A будет: U = I · R = 10 А · 0,23 Ом = 2,3 B .
Потеря мощности на нагрев в самом кабеле составит:P = U · I = 2,3 В · 10 А = 23 Вт .

Если длина кабеляL = 10 м . (того же сечения S = 0,75 мм.кв .),потеря мощности в кабеле составит 46 Вт . Это составляет примерно 2 % мощности потребляемой электронагревателем от сети.

Для а кабеляс алюминиевыми жилами того же сечения S = 0,75 мм.кв . показания увеличиваютсяи составляютдля L = 5 м-34,5 Вт. Для L = 10 м— 69 Вт.

Все данные расчетовдля кабелей сечением 0,75; 1,5; 2,5 мм.кв. для длины кабелейL = 5 и L = 10 метров,приведены в таблице.
Где: S – сечение провода в мм.кв.;
R 1
– сопротивление 1 метра провода в Ом;
R -сопротивление кабеля в Омах;
U – падение напряжения в кабеле в Вольтах;

Р – потеря мощности в кабеле в ватах или в процентах.

Какие же выводы нужно сделать из этих расчетов?

  • — При одном и том же поперечном сечении, медный кабель имеет больший запас надежности и меньше потерь электрической мощности на нагрев провода Р .
  • — С увеличением длины кабеля увеличиваются потери Р . Чтобы скомпенсировать потеринеобходимо увеличить поперечное сечение проводов кабеля S .
  • — Кабель желательно выбирать в резиновой оболочке, а жилы кабеля многожильными .

Для удлинителя желательно использовать евро-розетку и евро-вилку. Штырьки евро-вилки имеют диаметр 5 мм . У простой электрической вилки диаметр штырьков 4 мм . Евро-вилки рассчитаны на больший ток, чем простые розетка и вилка. Чем больше диаметр штырьков вилки, тем больше площадь контакта в месте соединения вилки и розетки, следовательно меньшее переходное сопротивление. Это способствует меньшему нагревув месте соединения вилки и розетки.

При передаче электрической энергии по коротким проводам сопротивлением их можно пренебречь. При большей длине их ) сопротивлением проводов пренебрегать нельзя, так как прохождение тока вызовет в них заметное падение напряжения:

Разность напряжений в начале и конце линии (рис. 2-5) , равная падению напряжения в проводах, называется потерей напряжения:

Рис. 2-5. Двухпроводная линия с нагрузкой на конце.

При неизменном напряжении в начале линии напряжение в конце линии, т. е. на приемнике, изменяется от при до при нагрузке.

Колебание напряжения для осветительной нагрузки не должно превышать - а для силовой ±5 и иногда номинального. Поэтому допускаемая потеря напряжения в линии не должна превышать тех же значений.

При заданной допустимой потере напряжения, используя формулу (2-31), можно определить необходимое сечение проводов линии

Найденное по формуле (2-33) сечение должно быть проверено на допустимое нагревание (табл. 2-3).

Мощность потерь в линии определяется произведением потери напряжения и тока, т. е.

Коэффициент полезного действия линии

с увеличением нагрузки уменьшается.

При потерях напряжения 2-5% к. п. д. линии составляет 98-95%.

Расчёт суммарной потери напряжения до удалённых потребителей с целью проверки у них отклонения напряжения и сравнения с нормативным является одним из базовых при проектировании систем электроснабжения. Как показывает практика, в различных проектных институтах, и даже у проектировщиков в рамках одного института, эти расчёты выполняются по-разному. В этой статье рассмотрены типичные ошибки проектировщиков на примере расчёта потери напряжения в магистральной линии, питающей летние домики на участках садовых товариществ.

2. Постановка задачи

Для магистральной линии, питающей летние домики садовых товариществ, требуется выполнить расчёт суммарной потери напряжения до удалённого потребителя. Конфигурация линии изображена на рис. 1.

Рис. 1. Конфигурация магистральной линии.

Линия подключена к трансформаторной подстанции (ТП) и содержит 4 ответвления (узла). Строго говоря, узел №4 узлом не является, так как в этом месте линия не разветвляется; он введён для удобства разграничения участков линии. Для каждого узла известно количество подключённых к нему домов. Ответвления в узлах №№1-3 подобны ответвлению в узле №4, но не разрисованы подробно, чтобы не загромождать рисунок.

Вся линия, за исключением ввода в дом №11, выполнена проводом СИП 2‑3х50+1х50; ввод в дом выполнен проводом СИП 4 - 2х16.Погонные электрические сопротивления проводов:

  • СИП 2 - 3х50+1х50: R пог = 0,641·10 -3 Ом/м; X пог = 0,0794·10 -3 Ом/м;
  • СИП 4 - 2х16: R пог = 1,91·10 -3 Ом/м; X пог = 0,0754·10 -3 Ом/м;

Коэффициент мощности нагрузки (cosϕ)равен 0,98 (tgϕ = 0,2). На рис. 1 указаны длины участков линии.

Определите величину суммарной потери напряжения в линии до дома №11.

3. Методика расчёта потери напряжения

Расчёт потери напряжения (в процентах) на участке линии можно выполнить по формуле:

  • для трёхфазных симметрично нагруженных линий

где P р (Q р) - расчётная активная (индуктивная) мощность линии, Вт (вар);

L - длина участка линии, м;

R пог (X пог) - погонное активное (индуктивное) сопротивление провода, Ом/м;

U ном (U ном.ф.) - номинальное линейное (фазное) напряжение сети, В.

Индуктивная мощность линии связана с активной следующим соотношением

  • для однофазных линий с одинаковым сечением фазного и нулевого проводников

\(\displaystyle {\Delta U=\frac{2 \cdot L \cdot P_р \cdot R_{пог}}{U_{ном.ф}^2}\cdot 100}\)

Осталось определить расчётную мощность на каждом участке линии. Это можно сделать по рекомендациям СП 31-110-2003 , п.6.2, табл.6.1, п.п.2. В зависимости от количества домов, запитанных через рассматриваемый участок линии, можно по таблице определить удельную нагрузку на дом и рассчитать электрическую нагрузку на участок линии. Количество домов на промежуточных участках рассчитывается, как суммарное количество домов на ответвлении (в узле) в конце участка и на следующем участке.

Например, число домов на участке между узлами №1 и №2 равно сумме числа домов на ответвлении №2 и на участке между узлами №2 и №3, т.е. N=8+(11+15)=34 дома. По табл.6.1 в определяется удельная нагрузка для 34 домов. В табл.6.1 указаны значения только для 24 и 40 домов, поэтому для 34 домов значение удельной нагрузки определяется методом линейной интерполяции:

где m - количество последовательных участков линии.

Приведённые выше формулы ни у кого не вызывают сомнений, так как приведены в справочниках. Но есть один момент, который явным образом не указан ни в справочниках, ни в нормативных документах, и который вызывает споры в среде проектировщиков, а именно - «какую нагрузку считать расчётной на участке магистральной линии при расчёте потери напряжения?». Ещё раз, «как определить расчётную нагрузку на участке магистральной линии не в случае выбора сечения жилы кабеля/провода линии по длительно-допустимому току, а при расчёте потери напряжения до удалённого потребителя?».

Например, в справочнике под редакцией Ю. Г. Барыбина нагрузка на участках линии определяется алгебраическим суммированием нагрузки в узлах, что никак не учитывает несовпадение максимумов графиков нагрузки потребителей. Там же, стр. 170:

Расчёт на потерю напряжения следует вести с учётом следующих обстоятельств: … для длительной работы исходными являются расчётная мощность P m или расчётный ток I m и соответствующий току коэффициент мощности.

Аналогичные расчёты приводятся в учебнике Ю. Д. Сибикина. В пособии С. Л. Кужекова суммарная потеря напряжения рассчитывается через суммы моментов нагрузки (момент нагрузки - произведение мощности электроприёмника на расстояние от него до центра питания), что по сути то же самое, что и в других справочниках, так как несовпадение максимумов нагрузки также не учитывается.

Привожу рассуждения, которыми руководствуются некоторые специалисты при расчётах.

При выборе сечения жилы провода используется понятие расчётной нагрузки как максимальной нагрузки на получасовом интервале . Действительно, это целесообразно при рассмотрении участка отдельно от других, так как при выборе сечения проводника не важно, какая нагрузка на соседнем участке. Другое дело - расчёт потери напряжения. Раз потери на различных участках суммируются, следовательно, в результате получим некоторое суммарное значение потери напряжения, рассчитанное из условия максимальной потери напряжения на каждом участке. При этом расчётное значение суммарной потери получается завышенным, так как максимумы нагрузок не совпадают по времени. При превышении потери напряжения нормативного значения приходится выполнять мероприятия по его уменьшению - увеличивать сечение проводов, дробить нагрузку на несколько линий. Таким образом, увеличиваются капитальные затраты на строительство линии.

Рассмотрим узел №3, приведённый на рис. 1. От узла отходят два ответвления - на 15 и 11 домов. Следовательно, на участке между узлами №2 и №3 (ветвь линии, входящая в узел №3) протекает нагрузка 26 домов. Определим расчётную нагрузку в каждой ветви:

  • N=26 домов, P 26 =0,882 кВт/дом, P р.26 =26·0,882=22,9 кВт;
  • N=15 домов, P 15 =1,2 кВт/дом, P р.15 =15·1,2=18 кВт;
  • N=11 домов, P 11 =1,5 кВт/дом, P р.11 =11·1,5=16,5 кВт.

Сумма нагрузок отходящих линий больше расчётной нагрузки входящей линии (18+16,5=34,5 кВт >22,9 кВт). Это нормально, так как максимумы нагрузок в отходящих линиях не совпадают по времени. Но если рассматривать нагрузку в какой-то конкретный момент времени, то, согласно первому правилу Кирхгофа, сумма нагрузок отходящих линий не должна превысить значение 22,9 кВт. Соответственно, если в расчётах учесть несовпадение максимумов нагрузок, то можно уменьшить расчётное значение потери напряжения, и, следовательно, капитальные затраты на строительство линии. Это можно сделать, если на отходящих линиях принять то же значение удельной нагрузки, что и на входящей в узел, то есть P 26 =0,882 кВт/дом. Тогда распределение нагрузок в отходящих линиях будет следующим:

  • N=15 домов, P р.15 =N·P 26 =15·0,882=13,2кВт;
  • N=11 домов, P р.11 =N·P 26 =11·0,882=9,7кВт.

Сумма нагрузок в отходящих линиях будет равна 22,9 кВт (расчётной нагрузке 26 домов), то есть равна расчётной нагрузке линии, входящей в узел №3.

Аналогичные рассуждения можно распространить на всю линию. Линия на рис. 1 питает 40 домов. Удельная нагрузка в этом случае равна 0,76 кВт/дом, расчётная нагрузка P р.40 =N·P 40 =40·0,76=30,4 кВт. Чтобы выполнялось первое правило Кирхгофа в каждом узле, следует на всех ответвлениях линии принять удельную нагрузку, равную удельной нагрузке для 40 домов.

Теперь можно сформулировать положения, которыми следует руководствоваться при расчёте суммарного значения потери напряжения.

  1. Расчётная нагрузка на любом участке линии определяется по удельной нагрузке, принятой для всей линии.
  2. Расчётная нагрузка ответвления от магистральной линии к одному дому считается по удельной нагрузке для одного дома.
  3. При расчёте потери напряжения на участке с одинаковым шагом между ответвлениями (вводами в дома) допускается распределённую нагрузку заменить сосредоточенной в середине участка.

На рис. 2 выполнено разбиение магистральной линии на участки с указанием количества домов, которые получают электроснабжение через соответствующий участок.

Рис. 2. Конфигурация магистральной линии с разбиением на участки.

Результаты расчёта потери напряжения представлены в таблице 1. Расчётная нагрузка на каждом участке определена по удельной нагрузке для 40 домов - P 40 =0,76 кВт/дом.

Учитывая, что до сих пор широко распространены и находятся в эксплуатации системы с уровнем напряжения 220/380 В, это значение напряжения и используется в расчётах в данной статье. Следует иметь ввиду, согласно ГОСТ 29322-2014 табл.1, что сейчас в проектируемых и реконструируемых системах электроснабжения следует использовать значение напряжения 230/400 В.

Таблица 1. Расчёт потери напряжения с учётом совмещения максимумов нагрузки.

№ участка

Длина участка, м

Кол-во домов, шт.

* длина участка №5 составляет 30 ·6=180 м, но, согласно положению №3, для упрощения расчётов рассматривается сосредоточенная нагрузка в середине участка, т.е. 180/2=90 м.

4. Замечания к методике расчёта с учётом несовпадения максимумов нагрузки

Методика, приведённая выше, на первый взгляд логична и убедительна, особенно для неспециалистов. Но если попробовать разобраться в ней, то появляется несколько вопросов, на которые не так-то легко получить ответ. Другими словами, методика не работает. Ниже приведу вопросы к сторонникам изложенной методики и их ответы.

Вопрос №1.

Зависит ли методика расчёта от длины первого участка линии?

Ответ: не зависит.

Предположим, что длина первого участка линии составляет всего 1 м. Таким образом, электрическое сопротивление этого участка достаточно мало, по сравнению с другими участками, длина которых составляет десятки и сотни метров, и им можно пренебречь. Фактически, получаем, что узел №1 (см. рис. 2) перемещается на шины РУ-0,4 кВ ТП. В данной ситуации получается, что нужно использовать для расчётов удельную нагрузку, определяемую для числа домов участка линии №2, то есть для 34 домов. Возникает ещё вопрос: «При какой длине участка №1 линии следует использовать удельную нагрузку, определяемую для суммарного количества домов?». Точного ответа на этот вопрос я не получил, но меня заверили, что в практических расчётах это значение достаточно велико (более десятка метров), поэтому нет необходимости в определении точной границы.

Хочу обратить внимание, что дело не в том, достаточной считают эту длину сторонники расчёта, или нет. Важно, что если бы был способ определить это значение, то была бы выявлена взаимосвязь между соотношениями потери напряжения на участках линии и расчётной нагрузкой на соответствующих участках.

Вопрос №2.

Зависит ли методика расчёта от длины линии между шинами РУ-0,4 кВ и трансформатором?

Ответ: не зависит.

Как правило, линия между трансформатором и шинами РУ-0,4 кВ выполняется шинопроводом или кабелем и её длина составляет несколько (около 10) метров. Но, представим, что РУ-0,4 кВ резервируется на напряжении 0,4 кВ от другой ТП или дизельной электростанции (см. рис. 3) кабельной или воздушной линией длиной несколько десятков (например, 50) метров.

Рис. 3. Схема резервирования ТП на стороне 0,4 кВ.

В аварийной ситуации трансформатор на ТП №1 отключается, и питание поступает через трансформатор ТП №2 по линии резервирования. В этой ситуации, получается, что перед участком №1 нашей схемы (см. рис. 2) добавляется ещё один участок. Шины РУ-0,4 кВ ТП №1 превращаются в узел с тремя ответвлениями (разумеется, от ТП отходит несколько линий) - линия №1 (40 домов), линия №2 (60 домов) и линия №3 (80 домов) - и питающей резервной линией. Нагрузка на резервную линию (а значит и потеря напряжения в линиях №1, №2 и №3) определяется по удельной нагрузке для суммарного количества (40+60+80=180) домов P 180 =0,586 кВт/дом.

Результаты расчётов для линии №1 (см. рис. 2) приведены в табл. 2.

Таблица 2. Расчёт потери напряжения с учётом резервирования ТП на напряжении 0,4 кВ.

№ участка Длина участка, м Кол-во домов, шт. Рр, кВт ΔU, % ΣΔU, %
1 40 40 23,44 0,42 0,42
2 60 34 19,924 0,53 0,95
3 270 26 15,236 1,83 2,77
4 70 11 6,446 0,20 2,97
5 90 11 6,446 0,26 3,23
6 20 1 4 0,63 3,86

Разница в значении потери в конце участка №6, по сравнению со схемой без резервирования, составляет 4,82-3,86=0,96%. Обращаю внимание, что сама конфигурация линии №1 не поменялась, и потери в резервной линии не учитывались. Просто из-за изменения конфигурации питающей схемы каким-то образом изменились (в сторону уменьшения) суммарные потери в рассматриваемой линии. В этой ситуации сразу напрашивается следующий вопрос (см. вопрос №3).

Вопрос №3.

Какие мероприятия приводят к уменьшению суммарной потери напряжения в линии?

Ответ: увеличение сечения проводника, уменьшение нагрузки на линию (дробление нагрузки и прокладка дополнительных линий от ТП).

Предположим, в узле №1 (см. рис. 2) в результате дополнительного ответвления увеличилось количество домов с 6 до 26 шт. Теперь удельная нагрузка изменилась, так как поменялось суммарное количество домов - было 40, стало 60; P 60 =0,69 кВт/дом. Результаты расчётов для этого случая приведены в табл. 3.

Таблица 3. Расчёт потери напряжения при увеличении числа домов на линии.

№ участка

Длина участка, м

Кол-во домов, шт.

Как видим, величина суммарной потери напряжения в конце участка №6 снизилась со значения 4,82% до значения 4,68%, хотя, по логике, при увеличении нагрузки это значение должно было возрасти. Но, согласно методике, к мероприятиям по уменьшению суммарной потери напряжения в линии, следует добавить также увеличение количества домов на линии. Этот абсурдный вывод так же показывает, что методика, приведённая выше, не работает.

Вопрос №4.

Всегда ли должно выполняться условие, когда сумма нагрузок участков линии, исходящих из узла, равна расчётной нагрузке участка, входящего в узел?

Ответ: всегда, за исключением ответвления ввода к одному дому.

Требование считать потери в ответвлении ввода к дому по расчётной нагрузке одного дома, видимо, вызвано соображениями о том, что в этом случае не идёт речь о совпадении максимумов, так как нет совпадения максимумов нагрузки разных потребителей в силу того, что потребитель просто-напросто один единственный.Рассмотрим участки №5 и №6 более подробно (см. рис. 2). На участке №6 в расчёте используется расчётная нагрузка одного дома, которая равна удельной нагрузке одного дома P р.1 =Р 1 =4 кВт. Не будем заменять на участке №5 распределённую нагрузку сосредоточенной и попробуем определить расчётную нагрузку на каждом отрезке между ответвлениями (вводами) к домам. На участке линии между домами №11 и №9 (№10), очевидно, следует использовать это же значение расчётной нагрузки. На отрезке между ответвлениями к домам №7 (№8) и №9 (№10) расчётная нагрузка уже определяется по удельной нагрузке всей линии:

N=3 дома, P 40 =0,76 кВт/дом, P р.3 =N·P 40 =3·0,76=2,28 кВт.

Здесь возникает законный вопрос: «Почему нагрузка трёх домов ниже, чем нагрузка одного дома?». Даже если 3 дома подключены к разным фазам линии, то даже в этом случае нагрузка по фазам не должна быть ниже 4 кВт. Если же дома подключены к одной и той же фазе, то даже с учётом несовпадения максимумов нагрузки, эта нагрузка никак не может быть ниже нагрузки одного дома, то есть 4 кВт. Сколько же домов нужно подключить, чтобы превысить нагрузку 4 кВт?

N=P р.1 /P 40 =4/0,76=5,3 ~ 6 домов.

Очевидно, что здесь в методике тоже наблюдается недочёт, так как в этом случае наблюдается занижение потери напряжения из-за необоснованного занижения расчётной нагрузки на участках ответвлений с количеством 5 домов и менее.

5. Ошибки методики расчёта потери напряжения с учётом несовпадения максимумов нагрузки

Вопросы, сформулированные к сторонникам вышеприведённой методики, наглядно показали её несостоятельность в отдельных случаях. Это не значит, что в остальных случаях всё хорошо, наоборот, примеры нестыковок в расчётах показывают, что расчёты по этой методике математически не обоснованы, и использовать её нельзя. Ниже перечислены основные ошибки, которые допущены при выводе методики.

Ошибка №1: не учитывается соотношение потери напряжения на разных участках.

Наглядно эта ошибка продемонстрирована в вопросе №3 (см. табл. 3). При увеличении количества домов потери напряжения на участке №1 несколько возросли (с 0,54% до 0,74%), зато на остальных участках потери уменьшились. Особенно нагляден участок №3. На нём потери напряжения уменьшились с 2,37 до 2,15%, то есть на ту же величину, на которую они увеличились на участке №1. Но, увеличение потери напряжения на участке №1 выглядит логично, так как увеличилась нагрузка на этом участке. Но вот как объяснить снижение потери напряжения на остальных участках, которые никак не относятся к добавленной нагрузке? И самое главное, как объяснить снижение суммарной величины потери напряжения в конце участков №3, №4, №5 и №6?

Если бы длина участка №1 была достаточно большая по сравнению с остальными участками (следовательно, и величина потери напряжения на этом участке была бы наибольшей), чтобы компенсировать снижение напряжения на остальных участках, то формально всё выглядело бы логично: увеличиваем нагрузку - увеличиваются суммарные потери в конце каждого участка (хоть и в пределах каждого участка линии, кроме первого, наблюдалось бы снижение величины потери напряжения). Следовательно, учёт соотношения потери напряжения между разными участками как-то выправил бы формально ситуацию, но, разумеется, несколько усложнил расчёты. Ещё раз отмечу, что вопрос снижения потери напряжения на отдельном участке всё равно остаётся открытым.

Ошибка №2: не учитывается высокая корреляция графиков однотипной нагрузки, а также графиков ответвлений и суммарного графика нагрузки.

Вся линия питает однотипную нагрузку, а именно, летние домики садовых товариществ. Для графиков нагрузки различных участков максимальное потребление (пики) мощности наблюдается приблизительно в одно и то же время, то есть можно говорить о высоком значении корреляции (взаимосвязи) этих графиков. В результате суммирования этих графиков получается график нагрузки, который обладает ещё большим значением корреляции к суммируемым графикам. На рис. 4 приведены графики нагрузок на разных ответвлениях линии (обозначены синим и красным цветами), а также их суммарный график нагрузки (обозначён чёрным цветом). В рассматриваемом примере (рис. 2) это узел №3 с двумя ответвлениями по 11 и 15 домов соответственно, а также участок №3 линии, на котором наблюдается суммирование графиков нагрузки этих ответвлений.

Рис. 4. Графики нагрузки ответвлений линии (красный и синий) и их суммарный график нагрузки (чёрный).

Между графиками ответвлений прослеживается положительная корреляция, то есть очевиден общий тренд к увеличению нагрузки в интервале времени с 9 до 18 часов, и её снижению в остальное время. В то же время видно, что есть интервалы времени, например, в районе 10 или 14 часов, когда на одном графике явно выражен пик нагрузки, а на другом пик отсутствует (10 часов), или даже наблюдается провал (14 и 16 часов). Таким образом, действительно, можно говорить о несовпадении графиков нагрузки несвязанных (то есть не соединённых последовательно) ответвлений линии, и это учитывается в расчётах снижением удельной нагрузки на питающем участке (участке №3). При этом наглядно продемонстрировано, что пики каждого отдельного ответвления и пики суммарного графика нагрузки практически совпадают по времени, что означает высокую положительную корреляцию графиков нагрузки последовательных участков линии. Следовательно, расчёты по методике с учётом несовпадения максимумов нагрузки приведут к занижению расчётной величины суммарной потери напряжения.

6. Расчёт потери напряжения по максимальной нагрузке на получасовом интервале

Ввиду недочётов методики расчёта суммарной потери напряжения с учётом несовпадения максимумов графиков нагрузок, приведённых выше, расчёты потери напряжения на участках следует вести по расчётной нагрузке, определяемой как максимальная нагрузка на получасовом интервале. Разбиение линии на участки см. на рис. 5; результаты расчёта приведены в табл. 4.

Рис. 5. Конфигурация магистральной линии с правильным разбиением на участки.

Таблица 4. Расчёт потери напряжения по расчётной (максимальной на получасовом интервале) нагрузке на участках линии.

№ участка

Длина участка, м

Кол-во домов, шт.

7. Выводы

  1. Расчёт потери напряжения по методике с учётом несовпадения максимумов графиков нагрузки приводит к занижению расчётного значения.
  2. Расчёт потери напряжения на участках линии следует выполнять по расчётной нагрузке участка; под расчётной следует понимать максимальную нагрузку на получасовом интервале.
  3. Расчётная нагрузка на участке определяется по количеству домов, запитанных через данный участок, и по удельной нагрузке, определённой для этого количества домов.
  4. Не допускается заменять распределённую нагрузку сосредоточенной, приложенной в середине участка из-за различия удельных нагрузок на участках.
  5. Суммарное значение потери напряжения в линии от ТП до дома №11 составило:
  • при расчёте по методике с учетом несовпадения максимумов нагрузок - 4,82%;
  • при расчёте по максимальной нагрузке на получасовом интервале - 6,53%.

Разница составляет 1,71%.

8. Литература

  1. СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий».
  2. РД 34.20.185-94 «Инструкция по проектированию городских электрических сетей».
  3. Справочник по проектированию электрических сетей и электрооборудования / Под ред. Ю. Г. Барыбина и др. - М.: Энергоатомиздат, 1991.
  4. Электроснабжение промышленных предприятий и установок: Учеб.для проф. учеб. заведений. / Ю. Д. Сибикин, М. Ю. Сибикин, В. А. Яшков - М.: Высш. шк., 2001.
  5. Практическое пособие по электрическим сетям и электрооборудованию / С. Л. Кужеков, С. В. Гончаров. - Ростов н/Д.: Феникс, 2007.

Кабельные линии большой протяженности отличаются значительным сопротивлением, которое вносит свои коррективы в работу сети. В зависимости от марки кабеля и других параметров будет отличаться и величина сопротивления. А величина потеть напряжения на кабельной линии прямо пропорциональна этому сопротивлению.

При помощи онлайн калькулятора расчет потерь напряжения в кабеле сводится к таким действиям:

  • Укажите длину кабеля в метрах и материал токоведущих жил в соответствующих окошках;
  • Сечение проводника в мм²;
  • Количество потребляемой электроэнергии в амперах или ваттах (при этом поставьте указатель напротив мощности или силы тока, в зависимости от того, какой параметр вам известен, и какую величину вы будете указывать);
  • Проставьте величину напряжения в сети;
  • Внесите коэффициент мощности cosφ;
  • Укажите температуру кабеля;

После того как вы внесли вышеперечисленных данные в поля калькулятора, нажмите кнопку «вычислить» и в соответствующих графах вы получите результат расчета — величину потерь напряжения в кабеле ΔU в %, сопротивление самого провода R пр в Ом, реактивную мощность Q пр в ВАр и напряжение на нагрузке U н.

Для вычисления этих величин вся система, включающая кабель и нагрузку, заменяется на эквивалентную, которую можно представить таким образом:

Как видите на рисунке, в зависимости от типа питания нагрузки (однофазная или трехфазная), сопротивление кабельной линии будет иметь последовательное или параллельное соединение по отношению к нагрузке. Расчет в калькуляторе осуществляется по таким формулам:

  • ΔU – потеря напряжения;
  • U Л – линейное напряжение;
  • U Ф – фазное напряжение;
  • I – ток, протекающий в линии;
  • Z К – полное сопротивление кабельной линии;
  • R К – активное сопротивление кабельной линии;
  • X К – реактивное сопротивление кабельной линии.

Из них U Л, U Ф, I, — задаются на этапе введения данных. Для определения полного сопротивления Z К производится арифметическое сложение его активной R К и реактивной X К составляющей. Активное и реактивное сопротивление определяется по формулам:

R К = (ρ * l) / S

R К – активное сопротивление кабельной линии, где

ρ – удельное сопротивление для соответствующего металла (медь или алюминий), но величина удельного сопротивления материала величина не постоянная и может изменяться в зависимости от температуры, из-за чего для приведения его к реальным условиям выполняется пересчет по отношению к температуре:

ρ t = ρ 20 *

  • a – это коэффициент температурного изменения удельного сопротивления материала.
  • ρ 20 – удельное сопротивление материала при температуре +20ºС.
  • t – реальная температура проводника, в данный момент времени.
  • l – длина кабельной линии (если нагрузка однофазная, а кабель имеет две жилы, то обе они включены последовательно и длину необходимо умножить на 2)
  • S – площадь сечения проводника.

Реактивная мощность определяется по такой формуле: Q = S*sin φ, где

Где S – это полная мощность, которую можно определить, как произведение тока в цепи на входное напряжение источника или как отношение активной мощности к коэффициенту мощности.

Для вычисления величины напряжения, приходящейся на нагрузку, производятся такие расчеты: U Н = U — ΔU, где

  • Где U Н – величина напряжения, приложенная к нагрузке;
  • U – напряжение на вводе в кабельную линию
  • ΔU – падение напряжения в кабельной линии.