Медь как металл и сырье в строительстве: ее особенности и нюансы обработки. Свойства меди и ее применение Медь краткое описание

Медь - это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.

Латинское название Cuprum произошло от имени острова Кипр. Известны факты, что на Кипре ещё в III веке до нашей эры находились медные рудники и местные умельцы выплавляли медь. Купить медь можно в комании « ».

По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции. Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры. Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.

Великим достижением древних металлургов можно назвать получение сплава с медной основой - бронзы.

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток , протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) - верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды - это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование.
Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди - это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Применение меди

Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении. Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом. Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).

Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.

Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.

Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания. К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди. Если же посуда внутри покрыта слоем олова, то опасности отравления нет.

В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.

Которая относиться к цветным металлам, известна с давних пор. Ее производство было изобретено раньше, чем люди начали изготавливать железо. По предположениям произошло в результате ее доступности и достаточно простого извлечения из содержащих медь соединений и сплавов. Итак, давайте рассмотрим сегодня свойства и состав меди, страны мира-лидеры по производству меди, изготовление изделий из нее и особенности этих сфер.

Медь обладает высоким коэффициентом электропроводимости, что послужило росту ее ценности, как электротехнического материала. Если ранее на электропровод тратилось до половины всей произведенной в мире меди, то сейчас с этими целями используется алюминий, как более доступный металл. А сама медь становиться наиболее дефицитным цветным металлом.

В этом видео рассмотрен химический состав меди:

Структура

Структурный состав меди включает в себя множество кристаллов: , золото, кальций, серебро, и многие другие. Все металлы, входящие в ее структуру, отличаются относительной мягкостью, пластичностью и простотой обработки. Большинство таких кристаллов в сочетании с медью образуют твердые растворы с непрерывными рядами.

Элементарная ячейка данного металла представляет собой кубическую форму. На каждую такую ячейку приходится по четыре атома, располагающихся на вершинах и центральной части грани.

Химический состав

Состав меди в процессе ее производства может включать в себя ряд примесей, которые влияют на структуру и характеристики конечного продукта. При этом их содержание должно регулироваться как по отдельным элементам, так и по их суммарному количеству. К примесям, которые встречаются в составе меди, можно отнести:

  • Висмут . Этот компонент негативно сказывается как на технологических, так и на механических свойствах металла. Именно поэтому он не должен превышать 0,001% от готового состава.
  • Кислород . Считается наиболее нежелательной примесью в составе меди. Его предельное содержание в сплаве составляет до 0,008% и стремительно сокращается в процессе воздействия высоких температур. Кислород негативно отражается на пластичности металла, а также на его устойчивости к коррозии.
  • Марганец . В случае изготовления проводниковой меди негативно отображается данный компонент на ее токопроводимости. Уже при комнатной температуре быстро растворяется в меди.
  • Мышьяк . Этот компонент создает твердый раствор с медью и практически не влияет на ее свойства. Его действие по большей мере направлено на нейтрализацию негативного воздействия от сурьмы, висмута и кислорода.
  • . Образует твердый раствор с медью и при этом снижает ее тепло- и электропроводность.
  • . Создает твердый раствор и способствует усилению теплопроводности.
  • Селен, сера . Эти два компонента имеют одинаковое воздействие на конечный продукт. Они организуют хрупкое соединение с медью и составляют не более 0,001%. При увеличении концентрации резко снижается степень пластичности меди.
  • Сурьма . Данный компонент хорошо растворяется в меди, поэтому оказывает минимальное воздействие на ее конечные свойства. Допускается ее не больше 0,05% от общего объема.
  • Фосфор . Служит главным раскислителем меди, предельная растворимость которого составляет 1,7% при температуре 714°С. Фосфор, в сочетании с медью, не только способствует ее лучшему свариванию, но и улучшает ее механические свойства.
  • . Содержится в небольшом количестве меди, практически не влияет на ее тепло- и электропроводность.

Производство меди

Медь производится из сульфидных руд, которые содержат эту медь в объеме минимум 0,5%. В природе существует около 40 минералов, содержащих данный металл. Наиболее распространенным сульфидным минералом, который активно используется в производстве меди, является халькопирит.

Для производства 1 т меди необходимо взять огромное количество сырья, которое ее содержит. Взять, к примеру, производство чугуна, для получения этого металла в объеме 1 тонны потребуется переработать около 2,5 т железной руды. А для получения такого же количества меди потребуется обработка до 200 т руды ее содержащей.

Видео ниже расскажет о добыче меди:

Технология и необходимое оборудование

Производство меди включает в себя ряд этапов:

  1. Измельчение руды в специальных дробилках и последующее более тщательное ее измельчение в мельницах шарового типа.
  2. Флотация. Предварительно измельченное сырье смешивается с малым количеством флотореагента и затем помещается во флотационную машину. В качестве такого добавочного компонента обычно выступает ксантогенат калия и извести, который в камере машины покрывается минералами меди. Роль извести на этом этапе крайне важна, поскольку она предупреждает обволакивание ксантогената частичками других минералов. К медным частичкам прилипают лишь пузырьки воздуха, которые выносят ее на поверхность. В результате этого процесса получается медный концентрат, который направляется удаление из его состава избыточной влаги.
  3. Обжиг. Руды и их концентраты проходят процесс обжига в моноподовых печах, что необходимо для выведения из них серы. В результате получается огарок и серосодержащие газы, которые в дальнейшем используют для получения серной кислоты.
  4. Плавка шихты в печи отражательного типа. На этом этапе можно брать сырую или уже обожженную шихту и подвергать ее обжигу при температуре 1500°С. Важным условием работы является поддержанием нейтральной атмосферы в печи. В итоге происходит сульфидирование меди и ее преобразование в штейн.
  5. Конвертирование. Полученная медь в сочетании с кварцевым флюсом продувается в специальном конвекторе на протяжении 15-24 ч. В итоге получается черновая медь в результате полного выгорания серы и выведения газов. В ее состав может входить до 3% различных примесей, которые благодаря электролизу выводятся наружу.
  6. Рафинирование огнем. Металл предварительно расплавляется и затем рафинируется в специальных печах. На выходе образуется красная медь.
  7. Электролитическое рафинирование. Этот этап проходит анодная и огневая медь для максимальной очистки.

Про заводы и центры производства меди в России и в мире читайте ниже.

Известные производители

На территории России действует всего четыре наибольших предприятия по добыче и производству меди:

  1. «Норильский никель»;
  2. «Уралэлектромедь»;
  3. Новгородский металлургический завод;
  4. Кыштымский медеэлектролитный завод.

Первые две компании входят в состав известнейшего холдинга «УГМК», который включает в себя около 40 промышленных предприятий. Он производит более 40% всей меди в нашей стране. Последние два завода принадлежат Русской медной компании.

Видеоролик ниже расскажет о производстве меди:

Минерал из класса самородных элементов. В природном минерале обнаруживаются Fe, Ag, Au, As и другие элементы в виде примеси или образующие с Cu твёрдые растворы. Простое вещество медь - это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. Он входит в семёрку металлов, известных человеку с очень древних времён. Медь является необходимым элементом для всех высших растений и животных.

Смотрите так же:

СТРУКТУРА

Кубическая сингония, гексаоктаэдрический вид симметрии m3m, кристаллическая структура — кубическая гранецентрированная решётка. Модель представляет собой куб из восьми атомов в углах и шести атомов, расположенных в центре граней (6 граней). Каждый атом данной кристаллической решетки имеет координационное число 12. Самородная медь встречается в виде пластинок, губчатых и сплошных масс, нитевидных и проволочных агрегатов, а также кристаллов, сложных двойников, скелетных кристаллов и дендритов. Поверхность часто покрыта плёнками «медной зелени» (малахит), «медной сини» (азурит), фосфатов меди и других продуктов её вторичного изменения.

СВОЙСТВА

Медь - золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь - один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни - с цинком, бронзы - с оловом и другими элементами, мельхиор - с никелем и другие.

ЗАПАСЫ И ДОБЫЧА

Среднее содержание меди в земной коре (кларк) - (4,7-5,5)·10 −3 % (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10 −7 % и 10 −7 % (по массе) соответственно. Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т - подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.
Медь получают из медных руд и минералов. Основные методы получения меди - пирометаллургия, гидрометаллургия и электролиз. Пирометаллургический метод заключается в получении меди из сульфидных руд, например, халькопирита CuFeS 2 . Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом.

ПРОИСХОЖДЕНИЕ

Небольшой самородок меди

Обычно самородная медь образуется в зоне окисления некоторых медносульфидных месторождений в ассоциации с кальцитом, самородным серебром, купритом, малахитом, азуритом, брошантитом и другими минералами. Массы отдельных скоплений самородной меди достигают 400 тонн. Крупные промышленные месторождения самородной меди вместе с другими медьсодержащими минералами формируются при воздействии на вулканические породы (диабазы, мелафиры) гидротермальных растворов, вулканических паров и газов, обогащенных летучими соединениями меди (например, месторождение озера Верхнее, США).
Самородная медь встречается также в осадочных породах, преимущественно в медистых песчаниках и сланцах.
Наиболее известные месторождения самородной меди — Туринские рудники (Урал), Джезказганское (Казахстан), в США (на полуострове Кивино, в штатах Аризона и Юта).

ПРИМЕНЕНИЕ

Из-за низкого удельного сопротивления, медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов и силовых трансформаторов.
Другое полезное качество меди - высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы.
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.
Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц - всех поверхностей, к которым прикасается рука человека.

Медь (англ. Copper) — Cu

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.1

Strunz (8-ое издание) 1/A.01-10
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.1.3
Dana (8-ое издание) 1.1.1.3

§1. Химические свойства простого вещества (ст. ок. = 0).

а) Отношение к кислороду .

В отличие от своих соседей по подгруппе – серебра и золота, - медь непосредственно реагирует с кислородом. Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:

В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:

Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь, розового цвета. К тому же слой оксида настолько тонок, что пропускает свет, т.е. просвечивает. По-иному медь окисляется при нагревании, например, при 600-800 0 C. В первые секунды окисление идет до оксида меди (I), которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.

Q образования (Cu 2 O) = 84935 кДж.

Рисунок 2. Строение оксидной пленки меди.

б) Взаимодействие с водой .

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например:

Эта реакция окислительно-восстановительная, так как происходит переход электронов:

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

в) Взаимодействие с кислотами .

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют.

Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:

Исключение составляет только иодоводородная кислота, которая вступает в реакцию с медью с выделением водорода и образованием очень устойчивого комплекса меди (I):

2 Cu + 3 HI → 2 H [ CuI 2 ] + H 2

Медь так же реагирует с кислотами – окислителями, например, с азотной:

Cu + 4HNO 3( конц .) → Cu(NO 3 ) 2 +2NO 2 +2H 2 O

3Cu + 8HNO 3( разбав .) → 3Cu(NO 3 ) 2 +2NO+4H 2 O

А так же с концентрированной холодной серной кислотой:

Cu + H 2 SO 4(конц.) → CuO + SO 2 + H 2 O

C горячей концентрированной серной кислотой:

Cu + 2H 2 SO 4( конц ., горячая ) → CuSO 4 + SO 2 + 2H 2 O

C безводной серной кислотой при температуре 200 0 С образуется сульфат меди (I):

2Cu + 2H 2 SO 4( безводн .) 200 °C → Cu 2 SO 4 ↓ + SO 2 + 2H 2 O

г) Отношение к галогенам и некоторым другим неметаллам .

Q образования (CuCl) = 134300 кДж

Q образования (CuCl 2) = 111700 кДж

Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX 2 .. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl 2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты. Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:

При этом монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

Медь так же достаточно легко ступает в реакции с серой и селеном при нагревании (300-400 °C):

2Cu +S→Cu 2 S

2Cu +Se→Cu 2 Se

А вот с водородом, углеродом и азотом медь не реагирует даже при высоких температурах.

д) Взаимодействие с оксидами неметаллов

Медь при нагревании может вытеснять из некоторых оксидов неметаллов (например, оксид серы (IV) и оксиды азота (II, IV)) простые вещества, образуя при этом термодинамически более устойчивый оксид меди (II):

4Cu+SO 2 600-800°C →2CuO + Cu 2 S

4Cu+2NO 2 500-600°C →4CuO + N 2

2 Cu +2 NO 500-600° C →2 CuO + N 2

§2. Химические свойства одновалентной меди (ст.ок. = +1)

В водных растворах ион Cu + очень неустойчив и диспропорционирует:

Cu + Cu 0 + Cu 2+

Однако медь в степени окисления (+1) может стабилизироваться в соединениях с очень низкой растворимостью или за счет комплексообразовния .

а) Оксид меди (I ) Cu 2 O

Амфотерный оксид. Кристаллическое вещество коричнево-красного цвета. В природе встречается в виде минерала куприта. Исскуственно может быть получен нагреванием раствора соли меди (II) с щелочью и каким-нибудь сильным восстановителем, например, формалином или глюкозой . Оксид меди(I) не реагирует с водой. Оксид меди(I) переводится в раствор концентрированной соляной кислотой с образованием хлоридного комплекса:

Cu 2 O +4 HCl →2 H [ CuCl 2]+ H 2 O

Так же растворим в концентрированном растворе аммиака и солей аммония:

Cu 2 O+2NH 4 + →2 +

В разбавленной серной кислоте диспропорционирует на двухвалентную медь и металлическую медь:

Cu 2 O+H 2 SO 4(разбав.) →CuSO 4 +Cu 0 ↓+H 2 O

Также оксид меди(I) вступает в водных растворах в следующие реакции:

1. Медленно окисляется кислородом до гидроксида меди(II):

2 Cu 2 O +4 H 2 O + O 2 →4 Cu (OH ) 2

2. Реагирует с разбавленными галогенводородными кислотами с образованием соответствующих галогенидов меди(I):

Cu 2 O +2 H Г→2 Cu Г↓ + H 2 O (Г= Cl , Br , J )

3.Восстанавливается до металлической меди типичными восстановителями, например, гидросульфитом натрия в концентрированном растворе:

2 Cu 2 O +2 NaSO 3 →4 Cu ↓+ Na 2 SO 4 + H 2 SO 4

Оксид меди(I) восстанавливается до металлической меди в следующих реакциях:

1. При нагревании до 1800 °C (разложение):

2 Cu 2 O - 1800 ° C →2 Cu + O 2

2. При нагревании в токе водорода, монооксида углерода, с алюминиеми прочими типичными восстановителями:

Cu 2 O + H 2 - >250°C →2Cu +H 2 O

Cu 2 O + CO - 250-300°C →2Cu +CO 2

3 Cu 2 O + 2 Al - 1000° C →6 Cu + Al 2 O 3

Также, при высоких температурах оксид меди(I) реагирует:

1. C аммиаком (образуется нитрид меди(I))

3 Cu 2 O + 2 NH 3 - 250° C →2 Cu 3 N + 3 H 2 O

2. С оксидами щелочных металлов:

Cu 2 O+M 2 O- 600-800°C →2 М CuO (M= Li, Na, K)

При этом образуются купраты меди (I).

Оксид меди (I) заметно реагирует с щелочами :

Cu 2 O +2 NaOH (конц.) + H 2 O ↔2 Na [ Cu (OH ) 2 ]

б) Гидроксид меди (I ) CuOH

Гидроксид меди(I) образует жёлтое вещество, не растворяется в воде.

Легко разлагается при нагревании или кипячении:

2 CuOH Cu 2 O + H 2 O

в) Галогениды CuF , Cu С l , CuBr и CuJ

Все эти соединения – белые кристаллические вещества, плохо растворимые в воде, но хорошо растворимые в избытке NH 3 , цианидных ионов, тиосульфатных ионов и иных сильных комплексообразователей. Иод образует только соединение Cu +1 J. В газообразном состоянии образуются циклы типа (CuГ) 3 . Обратимо растворимы в соответствующих галогенводородных кислотах:

Cu Г + HГ ↔ H [ Cu Г 2 ] (Г= Cl , Br , J )

Хлорид и бромид меди (I) неустойчивы во влажном воздухе и постепенно превращаются в основные соли меди (II):

4 Cu Г +2 H 2 O + O 2 →4 Cu (OH )Г (Г=Cl, Br)

г) Прочие соединения меди (I )

1. Ацетат меди (I) (СН 3 СООСu) - соединение меди, имеет вид бесцветных кристаллов. В воде медленно гидролизуется до Сu 2 О, на воздухе окисляется до ацетата двухвалентной меди; Получают СН 3 СООСu восстановлением (СН 3 СОО) 2 Сu водородом или медью, сублимацией (СН 3 СОО) 2 Сu в вакууме или взаимодействием (NH 3 OH)SO 4 с (СН 3 СОО) 2 Сu в р-ре в присутствии Н 3 СООNH 3 . Вещество токсично.

2. Ацетиленид меди(I) - красно-коричневые, иногда черные кристаллы. В сухом виде кристаллы детонируют при ударе или нагреве. Устойчивы во влажном состоянии. При детонации в отсутствие кислорода не образуется газообразных веществ. Под действием кислот разлагается. Образуется в виде осадка при пропускании ацетилена в аммиачные растворы солей меди(I):

С 2 H 2 +2[ Cu (NH 3 ) 2 ](OH ) → Cu 2 C 2 ↓ +2 H 2 O +2 NH 3

Данная реакция используется для качественного обнаружения ацетилена.

3. Нитрид меди - неорганическое соединение с формулой Cu 3 N, тёмно-зелёные кристаллы.

Разлагается при нагревании:

2 Cu 3 N - 300° C →6 Cu + N 2

Бурно реагирует с кислотами:

2 Cu 3 N +6 HCl - 300° C →3 Cu ↓ +3 CuCl 2 +2 NH 3

§3. Химические свойства двухвалентной меди (ст.ок. = +2)

Наиболее устойчивая степень окисления у меди и самая характерная для нее.

а) Оксид меди (II ) CuO

CuO - основный оксид двухвалентной меди. Кристаллы чёрного цвета, в обычных условиях довольно устойчивые, практически нерастворимые в воде. В природе встречается в виде минерала тенорита (мелаконита) чёрного цвета. Оксид меди(II) реагирует с кислотами с образованием соответствующих солей меди(II) и воды:

CuO + 2 HNO 3 Cu (NO 3 ) 2 + H 2 O

При сплавлении CuO со щелочами образуются купраты меди (II):

CuO +2 KOH - t ° K 2 CuO 2 + H 2 O

При нагревании до 1100 °C разлагается :

4CuO- t ° →2 Cu 2 O + O 2

б) Гидроксид меди (II) Cu (OH ) 2

Гидроксид меди(II) - голубое аморфное или кристаллическое вещество, практически не растворимое в воде. При нагревании до 70-90 °C порошка Cu(ОН) 2 или его водных суспензий разлагается до CuО и Н 2 О:

Cu (OH ) 2 CuO + H 2 O

Является амфотерным гидроксидом. Реагирует с кислотами с образованием воды и соответствующей соли меди:

С разбавленными растворами щелочей не реагирует, в концентрированных растворяется, образуя ярко-синие тетрагидроксокупраты (II):

Гидроксид меди(II) со слабыми кислотами образует основные соли . Очень легко растворяется в избытке аммиака с образованием аммиаката меди:

Cu(OH) 2 +4NH 4 OH→(OH) 2 +4H 2 O

Аммиакат меди имеет интенсивный сине-фиолетовый цвет, поэтому его используют в аналитической химии для определения малых количеств ионов Cu 2+ в растворе.

в) Соли меди (II )

Простые соли меди (II) известны для большинства анионов, кроме цианида и иодида, которые при взаимодействии с катионом Cu 2+ образуют ковалентные соединения меди (I), нерастворимые в воде.

Соли меди (+2), в основном, растворимы в воде. Голубой цвет их растворов связан с образованием иона 2+ . Они часто кристаллизуются в виде гидратов. Так, из водного раствора хлорида меди (II) ниже 15 0 С кристаллизуется тетрагидрат, при 15-26 0 С – тригидрат, свыше 26 0 С – дигидрат. В водных растворах соли меди (II) в небольшой степени подвержены гидролизу, и из них часто осаждаются основные соли .

1. Пентагидрат сульфата меди (II) (медный купорос)

Наибольшее практическое значение имеет CuSO 4 *5H 2 O, называемый медным купоросом. Сухая соль имеет голубую окраску, однако при несильном нагревании (200 0 С) она теряет кристаллизационную воду. Безводная соль белого цвета. При дальнейшем нагревании до 700 0 С она превращается в оксид меди, теряя триоксид серы:

CuSO 4 ­-- t ° CuO + SO 3

Готовят медный купорос растворением меди в концентрированной серной кислоте. Эта реакция описана в разделе «Химические свойства простого вещества». Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди .

2. Дигидрат хлорида меди (II).

Это темно-зеленые кристаллы, легкорастворимые в воде. Концентрированные растворы хлорида меди имеют зеленый цвет, а разбавленные – голубой. Это объясняется образованием хлоридного комплекса зеленого цвета:

Cu 2+ +4 Cl - →[ CuCl 4 ] 2-

И его дальнейшим разрушением и образованием голубого аквакомплекса.

3. Тригидрат нитрата меди (II).

Кристаллическое вещество синего цвета. Получается при растворении меди в азотной кислоте. При нагревании кристаллы сначала теряют воду, затем разлагаются с выделением кислорода и диоксида азота, переходя в оксид меди (II):

2Cu(NO 3 ) 2 -- →2CuO+4NO 2 +O 2

4. Карбонат гидроксомеди (II).

Карбонаты меди малоустойчивы и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди Cu 2 (OH) 2 CO 3 , который встречается в природе в виде минерала малахита. При нагревании легко разлагается с выделением воды, оксида углерода (IV) и оксида меди (II):

Cu 2 (OH) 2 CO 3 -- →2CuO+H 2 O+CO 2

§4. Химические свойства трехвалентной меди (ст.ок. = +3)

Эта степень окисления является наименее стабильной для меди, и поэтому соединения меди (III) являются скорее исключениями, чем «правилами». Тем не менее, некоторые соединения трехвалентной меди существуют.

а) Оксид меди (III) Cu 2 O 3

Это кристаллическое вещество, темно-гранатового цвета. Не растворяется в воде.

Получается окислением гидроксида меди(II) пероксодисульфатом калия в щелочной среде при отрицательных температурах:

2Cu(OH) 2 +K 2 S 2 O 8 +2KOH -- -20°C →Cu 2 O 3 ↓+2K 2 SO 4 +3H 2 O

Это вещество разлагается при температуре 400 0 С:

Cu 2 O 3 -- t ° →2 CuO + O 2

Окисид меди (III) – сильный окислитель. При взаимодействии с хлороводородом хлор восстанавливается до свободного хлора :

Cu 2 O 3 +6 HCl -- t ° →2 CuCl 2 + Cl 2 +3 H 2 O

б) Купраты меди (Ш)

Это черные или синие вещества, в воде не устойчивы, диамагнитны, анион – ленты квадратов (dsp 2). Образуются при взаимодействии гидроксида меди(II) и гипохлорита щелочного металла в щелочной среде :

2 Cu (OH ) 2 + М ClO + 2 NaOH →2М CuO 3 + NaCl +3 H 2 O (M = Na - Cs )

в) Калия гексафторкупрат(III)

Зеленое вещество, парамагнитно. Октаэдрическое строение sp 3 d 2 . Комплекс фторида меди CuF 3 , который в свободном состоянии разлагается при -60 0 С. Образуется нагреванием смеси хлоридов калия и меди в атмосфере фтора:

3KCl + CuCl + 3F 2 → K 3 + 2Cl 2

Разлагает воду с образованием свободного фтора.

§5. Соединения меди в степени окисления (+4)

Пока науке известно лишь одно вещество, где медь в степени окисления +4, это гексафторкупрат(IV) цезия – Cs 2 Cu +4 F 6 - оранжевое кристаллическое вещество, стабильное в стеклянных ампулах при 0 0 С. Бурно реагирует с водой. Получается фторированием при высоком давлении и температуре смеси хлоридов цезия и меди :

CuCl 2 +2CsCl +3F 2 -- t ° р → Cs 2 CuF 6 +2Cl 2

МЕДЬ и МЕДНЫЙ ПРОКАТ

Марки и химический состав технической меди

Марки меди и их химический состав определен в ГОСТ 859-2001 . Сокращенная информация о марках меди приведена ниже (указано минимальное содержание меди и предельное содержание только двух примесей – кислорода и фосфора):

Марка Медь О 2 P Способ получения, основные примеси
М00к 99.98 0.01 - Медные катоды: продукт электролитическогорафинирования, заключительная стадия переработки медной руды.
М0к 99.97 0.015 0.001
М1к 99.95 0.02 0.002
М2к 99.93 0.03 0.002
М00 99.99 0.001 0.0003 Переплавка катодов в вакууме, инертной или восстановительной атмосфере. Уменьшает содержание кислорода.
М0 99.97 0.001 0.002
М1 99.95 0.003 0.002
М00 99.96 0.03 0.0005 Переплавка катодов в обычной атмосфере. Повышенное содержание кислорода. Отсутствие фосфора
М0 99.93 0.04 -
М1 99.9 0.05 -
М2 99.7 0.07 - Переплавкалома . Повышенное содержание кислорода, фосфора нет
М3 99.5 0.08 -
М1ф 99.9 - 0.012 - 0.04 Переплавка катодов и лома меди с раскислением фосфором. Уменьшает содержание кислорода, но приводит к повышенному содержанию фосфора
М1р 99.9 0.01 0.002 - 0.01
М2р 99.7 0.01 0.005 - 0.06
М3р 99.5 0.01 0.005 - 0.06

Первая группа марок относится к катодной меди, остальные - отражают химический состав различных медных полуфабрикатов (медные слитки, катанка и изделия из неё, прокат).

Специфические особенности меди, присущие разным маркам, определяются несодержанием меди (различия составляют не более 0.5%), а содержанием конкретных примесей (их количество может различаться в 10 – 50 раз). Часто используют классификацию марок меди по содержанию кислорода:

Бескислородная медь (М00 , М0 и М1 ) с содержанием кислорода до 0.001%.

Рафинированная медь (М1ф, М1р, М2р, М3р) с содержанием кислорода до 0.01%, но с

повышенным содержанием фосфора.

Медь высокой чистоты (М00, М0, М1) с содержанием кислорода 0.03-0.05%.

Медь общего назначения (М2, М3) с содержанием кислорода до 0.08%.

Примерное соответствие марок меди, выпускаемой по разным стандартам, приведено ниже:

ГОСТ

EN , DIN

М00

Cu-OFE

М0 Cu-PHC , OF-Cu
М1

Cu-OF , Cu-OF1

М1

Cu-ETP, Cu-ETP1,Cu-FRTP, Cu-FRHC,

SE-Cu, E-Cu, E Cu57, E Cu58
М1 ф Cu-DHP , SF-Cu
М1р Cu-DLP , SW-Cu

Разные марки меди имеютразличное применение, а отличия в условиях их производства определяют существенные различия в цене.

Для производства кабельно-проводниковой продукции катоды переплавляют по технологии, которая исключает насыщение меди кислородом при изготовлении продукции. Поэтому медь в таких изделях соответствует маркамМ00, М0 , М1 .

Требованиям большинства технических задач удовлетворяют относительно дешевые марки М2 и М3. Это определяет массовое производство основных видов медного проката из М2 и М3.

Прокат из марок М1, М1ф, М1р, М2р, М3р производится в основном для конкретных потребителей и стоит намного дороже.

Физические свойства меди

Главное свойство меди, которое определяет её преимущественное использование – очень высокая электропроводность (или низкое удельное электросопротивление). Такие примеси как фосфор, железо, мышьяк, сурьма, олово, существенно ухудшают её электропроводность. На величину электропроводности существенное влияние оказывает способ получения полуфабриката и его механическое состояние. Это иллюстрируется приведенной ниже таблицей:

Удельное электрическое сопротивление меди для различных полуфабрикатов разных марок (гарантированные значения) при 20 о С.
мкОм*м марка Вид и состояние полуфабриката ГОСТ, ТУ

0.01707

М00

Слитки (непрерывное вертикальное литье)

193-79

М00

Катанка кл.А (кислород : 0.02-0.035%)

ТУ 1844 010 03292517

2004

0.01718

Катанка кл.В (кислород : 0.045%)

0.01724

Катанка кл.С (кислород : 0.05%)

193-79

Слитки (горизонтальное литье)

0.01748

Ленты

1173-2006

Прутки отожженные

1535-2006

0.01790

Прутки полутвердые, твердые, прессованные

Различия в сопротивлении катанки марок М00, М0 и М1, обусловлены разным количеством примесей и составляют около 1%. В то же время различия в сопротивлении, обусловленные разным механическим состоянием, достигают 2 – 3%. Удельное сопротивление изделий из меди маркиМ2 примерно 0.020 мкОм*м.

Второе важнейшее свойство меди - очень высокая теплопроводность.

Примеси и легирующие добавки уменьшают электро- и теплопроводность меди, поэтому сплавы на медной основе значительно уступают меди по этим показателям. Значения параметров основных физических свойств меди в сравнении с другими металлами приведены в таблице (данные приведены в двух разных системах единиц измерения):

Показатели

при

Единица

измерения

Медь

Алю-

миний

Латунь

Л63, ЛС

Бронза

БрАЖ

Сталь 12Х18Н10

Удельное

элетросопротивление,

мкОм * м

0.0172 –

0.0179

0.027-

0.030

0.065

0.123

0.725

Теплопроводность,

кал/см * с * град

0.93

0.52

0.25

0.14

0.035

Вт/м *град


386 - 390

По электро- и теплопроводности медь незначительно уступает только серебру.

Влияние примесей и особенности свойств меди различных марок

Отличия в свойствах меди разных марок связаны с влиянием примесей на базовые свойства меди. О влиянии примесей на физические свойства (тепло- и электропроводность) говорилось выше. Рассмотрим их влияние на другие группы свойств.

Влияние на механические свойства .

Железо, кислород, висмут, свинец, сурьма ухудшают пластичность. Примеси, малорастворимые в меди (свинец, висмут, кислород, сера), приводят к хрупкости при высоких температурах.

Температура рекристаллизации меди для разных марок составляет 150-240 о С. Чем больше примесей, тем выше эта температура. Существенное увеличение температуры рекристаллизации меди дает серебро, цирконий. Например введение 0.05% Ag увеличивает температуру рекристаллизации вдвое, что проявляется в увеличении температуры размягчения и уменьшении ползучести при высоких температурах, причем без потери тепло- и электропроводности.

Влияние на технологические свойства .

К технологическим свойствам относятся 1) способность к обработке давлением при низких и высоких температурах, 2) паяемость и свариваемость изделий.

Примеси, особенно легкоплавкие,формируют зоны хрупкости при высоких температурах, что затрудняет горячую обработку давлением. Однако уровень примесей в марках М1 и М2 обеспечивают необходимую технологическую пластичность.

При холодном деформировании влияние примесей заметно проявляется при производстве проволоки. При одинаковом пределе прочности на разрыв (? в = 16 кгс /мм 2 ) катанки из марок М00, М0 и М1 имеют разное относительное удлинение ? (38%, 35% и 30% соответственно). Поэтому катанка класса А (ей соответствует марка М00) более технологична при производстве проволоки, особенно малых диаметров. Использование бескислородной меди для производства проводников тока обусловлено не столько величиной электропроводности, сколько технологическим фактором.

Процессы сварки и пайки существенно затрудняются при увеличении содержания кислорода, а также свинца и висмута.

Влияние кислорода и водорода на эксплуатационные свойства .

При обычных условиях эксплуатационныесвойства меди (прежде всего долговечность эксплуатации) практически одинаковы для разных марок. В то же время при высоких температурахможет проявиться вредное влияние кислорода, содержащегося в меди. Эта возможность обычно реализуется при нагреве меди в среде, содержащей водород.

Кислород изначально содержится в меди марокМ0, М1, М2, М3. Кроме этого, если бескислородную медь отжечь на воздухе при высоких температурах, то вследствие диффузии кислорода поверхностный слой изделия станет кислородсодержащим.Кислород в меди присутствует в виде закиси меди ,которая локализуется по границам зерен.

Кроме кислорода в меди может присутствовать водород. Водород попадает в медь в процессе электролиза или при отжиге в атмосфере, содержащей водяной пар. Водяной пар всегда присутствует в воздухе. При высокой температуре он разлагается с образованием водорода, который легко диффундирует в медь.

В бескислородной меди атомы водорода располагаются в междоузлиях кристаллической решетки и особо не сказываются на свойствах металла.

В кислородсодержащей меди при высоких температурах водородвзаимодействует с закисью меди. При этом в толще меди образуется водяной пар высокого давления, что приводит к вздутиям, разрывам и трещинам. Это явление известно как «водородная болезнь» или «водородное охрупчивание». Оно проявляется при эксплуатации медного изделия при температурах свыше 200 о С в атмосфере, содержащей водород или водяной пар.

Степень охрупчивания тем сильнее, чем больше содержание кислорода в меди и выше температура эксплуатации. При 200 о С срок службы составляет1.5 года, при 400 о С - 70 часов.

Особенно сильно оно проявляется в изделиях малой толщины (трубки, ленты).

При нагреве в вакууме изначально содержащийся в меди водород взаимодействует с закисью меди и также ведет к охрупчиванию изделия и ухудшению вакуума. Поэтому изделия, которые эксплуатируются при высокой температуре, производятся из бескислородных (рафинированных) марок меди М1р, М2р, М3р.

Механические свойства медного проката

Большая часть медного проката, поступающего в свободную продажу, производится из марки М2. Прокат из марки М1 производится в основном под заказ, кроме того он примерно на 20% дороже.

Холоднодеформированный прокат – это тянутые (прутки, проволока, трубы) и холоднокатаные (листы, лента, фольга) изделия. Он выпускается в твердом, полутвердом и мягком (отожженном) состояниях. Такой прокат маркируется буквой «Д», а состояния поставки буквами Т, П или М.

Горячедеформированный прокат – результат прессования (прутки, трубы) или горячей прокатки (листы, плиты) при температурах выше температуры рекристаллизации. Такой прокат маркируется буквой «Г». По механическим свойствам горячедеформированный прокат близок (но не идентичен) к холоднодеформированному прокату в мягком состоянии.

Параметры при комнатной темп.

Модуль упругости E , кгс /мм 2

11000

13000

Модуль сдвига G , кгс /мм 2

4000

4900

Предел текучести ? 0.2 , кгс /мм 2

5 - 10

25 - 34

Предел прочности ? в , кгс /мм 2

19 – 27

31 – 42

Относ. удлинение ?

40 – 52

2 - 11

Твердость НВ

40 - 45

70 - 110

Сопротивление срезу, кгс /мм 2

10 - 15

18 - 21

Ударная вязкость,

16 - 18

Обрабатываем. резанием, % к Л63-3

Предел усталости ? -1 при 100 млн циклов

Высокий предел прочности на сжатие (55 - 65 кгс/мм 2 ) в сочетании с высокой пластичностью определяет широкое использование медив качестве прокладок в уплотнениях неподвижных соединений с температурой эксплуатации до 250 о С (давление 35Кгс\см 2 для пара и 100 Кгс\см 2 для воды).

Медь широко используется в технике низких температур, вплоть до гелиевых. При низких температурах она сохраняет показатели прочности, пластичности и вязкости, характерные для комнатной температуры. Наиболее часто используемое свойство меди в криогенной технике – её высокая теплопроводность. При криогенных температурах теплопроводность марок М1 и М2становится существенной, поэтому в криогенной технике применение марки М1 становится принципиальным.

Медные прутки выпускаются прессованными (20 – 180 мм) и холоднодеформированными, в твердом, полутвердом и мягком состояниях (диаметр 3 - 50 мм)по ГОСТ 1535-2006.

Плоский медный прокат общего назначения выпускается в виде фольги, ленты, листов и плит по ГОСТ 1173-2006:

Фольга медная – холоднокатаная: 0.05 – 0.1 мм (выпускается только в твердом состоянии)

Ленты медные - холоднокатаные: 0.1 – 6 мм.

Листы медные - холоднокатаные: 0.2 – 12 мм

Горячекатаные:3 – 25 мм (механич. свойства регламентируются до 12 мм)

Плиты медные – горячекатаные:свыше 25 мм (механические свойства не регламентируются)

Горячекатаные и мягкие холоднокатаные медные листы и ленты выдерживают испытание на изгиб вокруг оправки диаметром равным толщине листа. При толщине до 5 мм они выдерживают изгиб до соприкосновения сторон, а при толщине 6 – 12 мм - до параллельности сторон. Холоднокатанные полутвердые листы и ленты выдерживают испытание на изгиб на 90 град.

Таким образом допустимый радиус изгиба медных листов и лент равен толщине листа (ленты).

Глубина выдавливания лент и листов пуансоном радиусом 10 мм составляет не менее 7 мм для листов толщиной 0.1-0.14 мм и не менее 10 мм для листов толщиной 1-1.5 мм. По этому показателю (выдавливаемость) медь уступает латуням Л63 и Л68.

Медные трубы общего назначения изготавливаются холоднодеформированными (в мягком, полутвердом и твердом состояниях) и прессованными (больших сечений) по ГОСТ 617-2006.

Медные трубы используются не толькодля технологических жидкостей, но и для питьевой воды. Медь инертна по отношению к хлору и озону, которые используются для очистки воды, ингибирует рост бактерий, при замерзании воды медные трубы деформируются без разрыва. Медные трубы для воды производятся по ГОСТ Р 52318-2005 , для них ограничено содержание органических веществ на внутренней поверхности. Минимальные радиусы изгиба и допустимые давления для мягких медных труб приведены ниже:

Размер трубы, мм

Допустимое

давление, бар

Радиус изгиба, мм

Размер трубы

Допустимое

давление, бар

Дюймы (мм)

1/4” (6.35*0.8)

10*1

3/8” (9.52*0.8)

12*1

1/2” (12.7*0.8)

14*1

90 52

16*1

60

5/8” (15, 87*1)

18*1

3/4” (19,05*1)

20*1

60 75

22*1

80

7/8” (22.22*1)

Коррозионные свойства меди .

При нормальных температурах медь устойчива в следующих средах:

Сухой воздух

Пресная вода (аммиак, сероводород, хлориды, кислоты ускоряют коррозию)

В морской воде при небольших скоростях движения воды

В неокислительных кислотах и растворах солей (в отсутствии кислорода)

Щелочные растворы (кроме аммиака и солей аммония)

Сухие газы-галогены

Органические кислоты, спирты, фенольные смолы

Медь неустойчива в следующих средах:

Аммиак, хлористый аммоний

Окислительные минеральные кислоты и растворы кислых солей

Коррозионные свойства меди в некоторых средах заметно ухудшаются с увеличением количества примесей.

Контактная коррозия .

Допускается контакт меди с медными сплавами, свинцом, оловом во влажной атмосфере, пресной и морской воде. В то же время не допускается контакт с алюминием, цинком вследствие их быстрого разрушения.

Свариваемость меди

Высокая тепло- и электропроводность меди затрудняют её электросварку (точечную и роликовую). Особенно это касается массивных изделий. Тонкие детали можно сварить вольфрамовыми электродами. Детали толщиной более 2-х мм можно сваривать нейтральным ацетилено-кислородным пламенем. Надежный способ соединения медных изделий – пайка мягкими и твердыми припоями. Подробно о сварке меди см www.weldingsite.com.ua

Медные сплавы

Техническая медь имеет низкую прочность и износоустойчивость, плохие литейные и антифрикционные свойства. Этих недостатков лишены сплавы на медной основе - латуни и бронзы . Правда эти улучшения достигаются за счет ухудшения тепло- и электропроводности.

Имеются особые случаи, когда нужно сохранить высокую электро- или теплопроводность меди, но придать ей жаропрочность или износоустойчивость.

При нагревании меди выше температурырекристаллизации происходит резкое снижение предела текучести и твердости. Это затрудняет использование меди в электродах для контакной сварки. Поэтому, для этой цели используют специальные медные сплавы с хромом, цирконием, никелем, кадмием (БрХ, БрХЦр, БрКН, БрКд). Электродные сплавы сохраняютотносительно высокую твердость и удовлетворительную электро- и теплопроводностьпри температурах сварочного процесса (порядка 600С ).

Жаропрочностьдостигается также легированием серебром. Такие сплавы (МС) имеют меньшую ползучесть при неизменной электро- и теплопроводности.

Для использования в подвижных контактах (коллекторные пластины, контактный провод) применяют медь с небольшим уровнем легирования магнием или кадмием БрКд, БрМг. Они имеют повышенную износоустойчивость при высокой электропроводности.

Для кристаллизаторов используют медь с добавками железа или олова. Такие сплавы имеют высокую теплопроводность при повышенной износоустойчивости.

Низколегированные марки меди по сути являются бронзами, но часто их относят к группе медного проката с соответствующей маркировкой (МС, МК, МЖ) .