Когда и где была создана машина эниак. История создания эниак

Начиная с 1943 года группа специалистов под руководством Говарда Эйкена, Дж. Моучли и П. Эккерта в США начала конструировать вычислительную машину на основе электронных ламп, а не на электромагнитных реле. Эта машина была названа ENIAC (Electronic Numeral Integrator And Computer) и работала она в тысячу раз быстрее, чем «Марк-1». ENIAC содержал 18 тысяч вакуумных ламп, занимал площадь 9´15 метров, весил 30 тонн и потреблял мощность 150 киловатт. ENIAC имел и существенный недостаток – управление им осуществлялось с помощью коммутационной панели, у него отсутствовала память, и для того чтобы задать программу приходилось в течение нескольких часов или даже дней подсоединять нужным образом провода. Худшим из всех недостатков была ужасающая ненадежность компьютера, так как за день работы успевало выйти из строя около десятка вакуумных ламп.

Чтобы упростить процесс задания программ, Моучли и Эккерт стали конструировать новую машину, которая могла бы хранить программу в своей памяти. В 1945 году к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этой машине. В этом докладе фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров. Это первая действующая машина, построенная на вакуумных лампах, официально была введена в эксплуатацию 15 февраля 1946 года. Эту машину пытались использовать для решения некоторых задач, подготовленных фон Нейманом и связанных с проектом атомной бомбы. Затем она была перевезена на Абердинский полигон, где работала до 1955 года.

ENIAC стал первым представителем 1-го поколения компьютеров. Любая классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представляется ламповыми машинами.

Устройство и работа компьютера по «принципу фон Неймана»

Необходимо отметить огромную роль американского математика фон Неймана в становлении техники первого поколения. Нужно было осмыслить сильные и слабые стороны ENIAC и дать рекомендации для последующих разработок. В отчете фон Неймана и его коллег Г. Голдстайна и А.Беркса (июнь 1946 года) были четко сформулированы требования к структуре компьютеров. Отметим важнейшие из них:

· машины на электронных элементах должны работать не в десятичной, а в двоичной системе счисления;

· программа, как и исходные данные, должна размещаться в памяти машины;

· программа, как и числа, должна записываться в двоичном коде;

· трудности физической реализации запоминающего устройства, быстродействие которого соответствует скорости работы логических схем, требуют иерархической организации памяти (то есть выделения оперативной, промежуточной и долговременной памяти);

· арифметическое устройство (процессор) конструируется на основе схем, выполняющих операцию сложения; создание специальных устройств для выполнения других арифметических и иных операций нецелесообразно;

· в машине используется параллельный принцип организации вычислительного процесса (операции над числами производятся одновременно по всем разрядам).

На следующем рисунке показано, каковы должны быть связи между устройствами компьютера согласно принципам фон Неймана (одинарные линии показывают управляющие связи, пунктир - информационные).

Практически все рекомендации фон Неймана впоследствии использовались в машинах первых трех поколений, их совокупность получила название «архитектура фон Неймана». Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 году английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 года Джон фон Нейман.

Новые машины первого поколения сменяли друг друга довольно быстро. В 1951 году заработала первая советская электронная вычислительная машина МЭСМ, площадью около 50 квадратных метров. МЭСМ имела 2 вида памяти: оперативное запоминающее устройство, в виде 4 панелей высотой в 3 метра и шириной 1 метр; и долговременная память в виде магнитного барабана объемом 5000 чисел. Всего в МЭСМ было 6000 электронных ламп, а работать с ними можно было только после 1,5-2 часов после включения машины. Ввод данных осуществлялся с помощью магнитной ленты, а вывод – цифропечатающим устройством сопряженным с памятью. МЭСМ могла выполнять 50 математических операций в секунду, запоминать в оперативной памяти 31 число и 63 команды (всего было 12 различных команд), и потребляла мощность равную 25 киловаттам.

Возможности машин первого поколения были достаточно скромны. Так, быстродействие их по нынешним понятиям было малым: от 100 («Урал-1») до 20 000 операций в секунду (М-20 в 1959 году). Эти цифры определялись в первую очередь инерционностью вакуумных ламп и несовершенством запоминающих устройств. Объем оперативной памяти был крайне мал – в среднем 2 048 чисел (слов), этого не хватало даже для размещения сложных программ, не говоря уже о данных. Промежуточная память организовывалась на громоздких и тихоходных магнитных барабанах сравнительно небольшой емкости (5 120 слов у БЭСМ-1). Медленно работали и печатающие устройства, а также блоки ввода данных. Если же остановиться подробнее на устройствах ввода-вывода, то можно сказать, что с начала появления первых компьютеров выявилось противоречие между высоким быстродействием центральных устройств и низкой скоростью работы внешних устройств. Кроме того, выявилось

несовершенство и неудобство этих устройств. Первым носителем данных в компьютерах, как известно, была перфокарта. Затем появились перфорационные бумажные ленты или просто перфоленты. Они пришли из телеграфной техники после того, как в начале XIX в. отец и сын из Чикаго Чарлз и Говард Крамы изобрели телетайп.

ЭВМ первого поколения, эти жесткие и тихоходные вычислители, были пионерами компьютерной техники. Они довольно быстро сошли со сцены, так как не нашли широкого коммерческого применения из-за ненадежности, высокой стоимости, трудности программирования.

)) по заказу Лаборатории баллистических исследований (англ. ) Армии США для расчётов таблиц стрельбы . В отличие от созданного в 1941 году немецким инженером Конрадом Цузе комплекса , использовавшего механические реле , в ЭНИАКе в качестве основы компонентной базы применялись вакуумные лампы .

К февралю 1944 года были готовы все диаграммы и чертежи будущего компьютера, и группа инженеров под руководством Экерта и Мокли приступила к воплощению замысла в «железо». В группу вошли также:

  • Роберт Шоу (Robert F. Shaw} (функциональные таблицы)
  • Джеффри Чуан Чу (Jeffrey Chuan Chu) (модуль деления/извлечения квадратного корня)
  • Томас Кайт Шарплес (Thomas Kite Sharpless) (главный программист)
  • Артур Бёркс (Arthur Burks) (модуль умножения)
  • Гарри Хаски (Harry Huskey) (модуль чтения вывод данных)
  • Джек Дэви (Jack Davis) (аккумуляторы)

В середине июля 1944 года Мокли и Эккерт собрали два первых «аккумулятора» - модули, которые использовались для сложения чисел. Соединив их вместе, они перемножили два числа 5 и 1000 и получили верный результат. Этот результат был продемонстрирован руководству Института и Баллистической Лаборатории и доказал всем скептикам, что электронный компьютер действительно может быть построен.

Компьютер был полностью готов лишь осенью 1945 года. Так как война к тому времени уже была закончена, и острой необходимости в быстром расчете таблиц стрельбы уже не было, военное ведомство США решило использовать ENIAC в расчетах по разработке термоядерного оружия.

Будучи сверхсекретным проектом Армии США, компьютер был представлен публике и прессе лишь много месяцев спустя после окончания войны - 14 февраля 1946 года. Через несколько месяцев - в ноябре 1946 года - ENIAC был разобран и перевезен из Университета Пенсильвании в г. Абердин в Лабораторию баллистических исследований Армии США, где с августа 1947 года он успешно проработал ещё много лет и был окончательно выключен 2 октября 1955 года.

В Баллистической Лаборатории на ENIAC выполнялись расчеты по проблеме термоядерного оружия, прогнозам погоды в СССР для предсказания направления выпадения ядерных осадков на случай ядерной войны, инженерные расчеты, и конечно же таблиц стрельбы , включая таблицы стрельбы ядерными боеприпасами.

Использование

В качестве испытания ЭНИАКу первой была поставлена задача по математическому моделированию термоядерного взрыва супер-бомбы по гипотезе Улама-Теллера. фон Нейман, который одновременно работал консультантом и в Лос-Аламосской лаборатории и в Институте Мура, предложил группе Теллера использовать ЭНИАК для расчетов ещё в начале 1945 года. Решение проблемы термоядерного оружия требовало такого огромного объёма вычислений, что справиться с ним не могли никакие электромеханические калькуляторы, имевшиеся в распоряжении Лаборатории. В августе 1945 физики Лос-Аламосской лаборатории Николас Метрополис и Стенли Френкель (англ. ) посетили институт Мура, и Герман Голдстайн вместе со своей женой Адель, которая работала в команде программистом и была автором первого руководства по работе с ЭНИАКом , познакомили их с техникой программирования ЭНИАКа. После этого они вернулись в Лос-Аламос, где стали работать над программой под названием «The Los Alamos Problem».

Производительность ЭНИАКа был слишком мала для полноценной симуляции, поэтому Метрополис и Френкель сильно упростили уравнение, игнорируя многие физические эффекты и стараясь хотя бы приблизительно рассчитать лишь первую фазу взрыва дейтерий-тритиевой смеси в одномерном пространстве. Детали и результаты выполненных в ноябре-декабре 1945 года расчетов до сих пор засекречены. Перед ЭНИАКом была поставлена задача решить сложнейшее дифференциальное уравнение, для ввода исходных данных к которому понадобилось около миллиона перфокарт. Вводная задача была разбита на несколько частей, чтобы данные могли поместиться в память компьютера. Промежуточные результаты выводились на перфокарты и после перекоммутации снова заводились в машину. В апреле 1946 года группа Теллера обсудила результаты и расчетов и сделала вывод, что они достаточно обнадеживающе хотя и очень приблизительно доказывают возможность создания водородной бомбы.

На обсуждении результатов расчета присутствовал Станислав Улам . Пораженный скоростью работы ЭНИАКа он предложил сделать расчеты по термоядерному взрыву методом Монте-Карло . В 1947 году на ЭНИАКе было выполнено 9 расчетов этим методом с различными исходными параметрами. После этого метод Монте-Карло стал использоваться во всех вычислениях, связанных с разработкой термоядерного оружия.

В 1949 году фон Нейман использовал ЭНИАК для расчета числа пи и с точностью до 2000 знаков после запятой. фон Неймана интересовало статистическое распределение цифр в этих числах. Предполагалось, что цифры в этих числах появляются с равной вероятностью, а значит компьютеры могут генерировать действительно случайные числа, которые можно использовать как вводные параметры для вычислений методом Монте-Карло. Вычисления для числа были выполнены в июле 1949 года, а для числа пи - за один день в начале сентября. Результаты показали, что «цифры в числе пи идут в случайном порядке, а вот с числом все обстояло значительно хуже» .

Вычисления производились в десятичной системе , после тщательного анализа ей было отдано предпочтение перед двоичной системой в связи с тем, что для реализации устройств оперирующих с двоичными числами требовалось значительно меньшее количество ламп. Компьютер оперировал числами максимальной длинной в 20 разрядов .

Многие специалисты Института скептически предсказывали, что при таком количестве ламп в системе компьютер просто не сможет работать сколь-нибудь продолжительное время, чтобы выдать стоящий результат - слишком много точек отказа. Выход из строя одной лампы, одного конденсатора, или резистора, значил останов работы всей машины, и по теории вероятности существовало 1.8 миллиардов вероятностей отказа в каждую секунду . Для того, чтобы вакуумные лампы реже перегорали, Экерт придумал подавать на них минимальное напряжение, а после произведения вычислений ЭНИАК продолжал работать, поддерживая лампы в «теплом» состоянии, чтобы перепад температуры при охлаждении и накаливании не приводил к их перегоранию. Так инженеры добились того, чтобы ЭНИАК работал минимум 20 часов между поломками. Не так много по нынешним меркам, но за каждые 20 часов работы ЭНИАК выполнял месячный объём работы механических вычислителей.

В январе 1944 года, Экерт сделал первый набросок второго компьютера с более совершенным дизайном, в котором программа хранилась в памяти компьютера, а не формировалась с помощью коммутаторов и перестановки блоков, как в ЭНИАКе. Летом 1944 года военный куратор проекта Герман Голдстайн случайно познакомился со знаменитым математиком фон Нейманом и привлек его к работе над машиной. Фон Нейман внес свой вклад в проект с точки зрения строгой теории. Так был создан теоретический и инженерный фундамент для следующей модели компьютера под названием EDVAC с хранимой в памяти программой. Контракт с Армией США на создание этой машины был подписан в апреле 1946 года.

Научная работа фон Неймана «Первый проект отчёта о EDVAC (англ. )», обнародованная 30 июня 1945 года, послужила толчком к созданию вычислительных машин в США (EDVAC , BINAC , UNIVAC I) и в Англии (EDSAC). Из-за огромного научного авторитета идея о компьютере с программой, хранимой в памяти, приписывается фон Нейману («архитектура фон Неймана »), хотя приоритет на самом деле принадлежит Экерту, предложившему использовать память на ртутных акустических линиях задержки. Фон Нейман подключился к проекту позднее и просто придал инженерным решениям Мокли и Экерта академический научный смысл.

В июле 1953 года к ЭНИАКу подключен был модуль памяти на магнитных сердечниках, увеличивший объём оперативной памяти компьютера с 20 до 120 число-слов.

Влияние

ЭНИАК нельзя было назвать совершенным компьютером. Машина создавалась в военное время в большой спешке с нуля при отсутствии какого-либо предыдущего опыта создания подобных устройств. ЭНИАК был построен в единственном экземпляре, и инженерные решения, реализованные в ЭНИАКЕ, не использовались в последующих конструкциях компьютеров. ЭНИАК скорей компьютер не первого, а «нулевого» поколения. Значение ЭНИАКа заключается просто в его существовании, которое доказало возможность построения полностью электронного компьютера, способного работать достаточно продолжительное время, чтобы оправдать затраты на его постройку и принести ощутимые результаты.

В марте 1946 года Экерт и Мокли из-за споров с Пенсильванским университетом о патентах на ЭНИАК и на EDVAC , над которым они в то время работали, решили покинуть институт Мура и начать частный бизнес в области построения компьютеров. В качестве «прощального подарка» и по просьбе Армии США они прочитали в институте серию лекций о конструировании компьютеров под общим названием «Теория и методы разработки электронных цифровых компьютеров», опираясь на свой опыт построения ENIAC и проектирования EDVAC. Эти лекции вошли в историю как «Лекции Института Мура (англ. )». Лекции - по сути первые в истории человечества компьютерные курсы - читались летом 1946 года с 8 июля по 31 августа только для узкого круга специалистов США и Великобритании, работавших над той же проблемой в разных правительственных ведомствах и научных институтах, всего 28 человек. Лекции послужили отправной точкой к созданию в 40-х и 50-х года успешных вычислительных систем CALDIC, SEAC , SWAC, ILLIAC, машина Института перспективных исследований (англ. ) и компьютер Whirlwind (англ. ), использовавшийся ВВС США в первой в мире компьютерной системе ПВО SAGE.

Память о компьютере

См. также

  • EDSAC - британский компьютер, первый реализовавший «архитектуру фон Неймна» (1948)
  • EDVAC - следующий компьютер Института Мура, созданный для Армии США на принципах «архитектуры фон Неймана » (1949)

Литература

  • Herman H. Goldstine. The Computer from Pascal to von Neumann . - Princeton University Press, 1980. - 365 p. - ISBN 9780691023670 (англ.)
  • Scott McCartney. ENIAC: The Triumphs and Tragedies of the World"s First Computer . - Berkley Books, 2001. - 262 p. - ISBN 9780425176443 (англ.)
  • Raúl Rojas, Ulf Hashagen.
К моменту начала работы над первым полностью электронным компьютером, пригодным к практическому использованию, Джону Пресперу Эккерту было всего 24 года. К слову, на проекте он был в числе ведущих инженеров и одним из немногих, кто работал над ENIAC на полную ставку. Эккерт рассказывал, что всего над ENIAC трудились около 50 человек, из них инженеров и представителей технических направлений было 12. Джон Уильям Мокли, ещё один знаменитый «со-основатель» ENIAC, совмещал эту работу с другими проектами.

Мы привыкли думать, что в 24 года большинство молодых людей только заканчивает учебу в университете, и уж никак не получает ведущую роль в важном и срочном проекте, который курирует военное ведомство. Сам Эккерт говорил, что, несмотря на довольно небольшой возраст, он был хорошо подготовлен к этой работе:

Эккерт говорил, что своеобразной «школой», которая помогла ему начать работу над компьютером, стало его увлечение электротехникой. Эккерт родился в Филадельфии, в дни его молодости называвшейся «Долиной электронных ламп» (Vacuum Tube Valley): именно там поначалу изготавливалась основная масса радиоприемников и телевизоров, производимых в США. Неудивительно, что ещё подростком Эккерт работал над проектом простенького телевизора в лаборатории Фарнсуорта (он присоединился к Филадельфийскому Клубу Инженеров), а, став немного старше, занимался проблемами радаров.

Первую собственную разработку Эккерт запатентовал в возрасте 21 года и впоследствии (как до, так и после ENIAC) работал над десятками изобретений. Однако, несмотря на все это, он не считает, что без него создание компьютера было бы невозможно:

Каждый изобретатель делает свою работу на основании результатов деятельности других учёных. И если бы не я построил ENIAC, это бы сделал кто-то другой. Всё, что делает изобретатель – ускоряет процесс.

Мифы и реальность

Разумеется, на заре пятидесятых никто и помыслить не мог, что современные компьютеры будут умещаться буквально на ладони. Эккерт вспоминает: Джон Мокли полагал, что всему миру потребуется не более шести компьютеров. Это неудивительно – в рабочем состоянии ENIAC занимал площадь порядка 1800 квадратных футов [ок. 167 кв.м.] и весил 27 тонн.

В ENIAC было чуть менее 18 000 электронных ламп. По воспоминаниям Эккерта, в распоряжении проекта были все лампы, которые могли предоставить им поставщики. Разработчики использовали 10 типов ламп, «хотя [технически] хватило бы и четырёх типов» – просто их общего количества было недостаточно.

Сделано это было в надежде таким образом снизить вероятность поломки. Теоретически у ENIAC было огромное количество точек отказа (1,8 миллиарда вариантов отказа в секунду), из-за чего многим идея практического использования компьютера казалась невероятной. Тем не менее, ломался ENIAC не так уж часто – всего один раз в 20 часов.

Из-за того, что машина использовала просто огромное количество ламп (и была беспрецедентным изобретением по тем временам), вокруг ENIAC постоянно ходили разнообразные мифы и слухи. Например, популярностью пользуется история о том, что работающий ENIAC вырубал свет во всей Филадельфии – Эккерт в интервью её опроверг. Говорят еще, что кто-то должен был бегать у машины с коробкой ламп и заменять по одной лампе каждые несколько минут. Это ещё один миф.

Многие попросту не верили в возможности полностью электронного компьютера – отсюда и миф о том, что он мог выполнять только примитивные арифметические действия. Однако этого было бы явно недостаточно для того, чтобы радикально ускорить составление таблиц стрельбы – на самом деле ENIAC мог решать дифференциальные уравнения второго порядка. Точно такой же выдумкой является и преувеличенно почтительное отношение к компьютеру – Эккерт в своём интервью категорически отрицает якобы «факт» того, что военные отдавали машине честь.

По мнению Джона Эккерта, роль Джона фон Неймана в разработке ENIAC тоже сильно преувеличена. Тем не менее, забавные случаи в истории ENIAC все-таки происходили. Например, чистой правдой Эккерт называет «мышиный тест»:

Мы знали, что мыши будут грызть изоляционный слой проводов, поэтому взяли все образцы проводов, которые могли найти, и положили их в клетку с мышами, чтобы посмотреть, какую изоляцию они не станут есть. Мы использовали только те провода, которые прошли «мышиный тест».


Что было после

ENIAC стал родоначальником целого направления в ИТ. По отношению к сегодняшним компьютерам он занимает примерно такое же место, как лампочка Эдисона – к современным лампам.

Несмотря на свою значимость для военных задач начала Холодной войны и для развития всей отрасли информационных технологий, ENIAC после окончания его работы (компьютер бы выключен 2 октября 1955 года) ждала незавидная судьба. Компьютер, представляющий историческую ценность, фактически сгнил на военных складах.

40 панелей компьютера, весом почти 390 килограмм каждая, после его торжественной остановки разделили. Часть панелей оказалась в руках университетов: одна была пожертвована Университету Мичигана, ещё пару приобрёл Смитсоновский Институт. Однако остальные панели просто отправили на склады – система записей на некоторых из них велась недостаточно тщательно, шли годы, и новое руководство, приходя к работе, уже не подозревало, что груда металла в том или ином ангаре представляет хоть какую-то ценность.

Поисками того, что осталось от ENIAC, занялась команда миллиардера Росса Перо, когда тот решил разыскать раритеты из мира технологий для декорирования своего офиса. Выяснилось, что часть панелей когда-то была перевезена с испытательного полигона в Абердине (штат Мериленд) в Форт Силл в Оклахоме в военный музей полевой артиллерии.

Куратор музея был в шоке, узнав, что в музее находился самый большой в мире блок ENIAC – в общей сложности девять панелей, все из которых хранились в безымянных деревянных ящиках, которые никто не открывал многие годы. Представители Форта Силл заявили, что им неизвестно, как у них оказалась практически четверть компьютера ENIAC.

Форт Силл согласился отдать Перо панели в обмен на обещание, что остатки ENIAC отреставрируют хотя бы внешне. Инженерам, которые взялись за дело, сразу стало ясно – в рабочее состояние компьютер привести не получится хотя бы потому, что для этого понадобились бы все 40 панелей, не говоря обо всех остальных компонентах и утраченных знаниях. Поэтому перед ними встала более простая задача: сделать то, что осталось от ENIAC, хотя бы внешне похожим на эпохальный компьютер в период его расцвета.

Панели очистили от пыли и ржавчины, обработали пескоструйным аппаратом и заново покрыли краской, после чего аккуратно припаяли к ним новые лампы (для вида, конечно). Какое-то время обновлённые панели находились в офисе Perot Systems, однако после её слияния с Dell руководство приняло решение вернуть отреставрированные блоки ENIAC в музей Форта Силл. К сожалению, от былого величия этого компьютера осталась только оболочка – да и та не полностью сохранилась.

Сотрудники Росса Перо сравнивают ENIAC с Ковчегом Завета из фильма об Индиане Джонсе – он точно так же оказался окончательно утрачен, несмотря на всю свою важность, потому что военные музеи и склады даже не подозревали о том, что именно столько лет хранилось в их запасниках. Тем не менее, несколько лет назад в Dell ещё говорили о попытках отыскать остальные не разрушившиеся окончательно панели ENIAC – остаётся надеяться, что они все ещё существуют.

P.S. Другие материалы о том, как мы улучшаем работу провайдера виртуальной инфраструктуры

ЭВМ 1-ого поколения. Эниак (ENIAC)

Начиная с 1943 года, группа специалистов под руководством Говарда Эйкена, Дж. Моучли и П. Эккерта в США начала конструировать вычислительную машину на основе электронных ламп, а не на электромагнитных реле. Эта машина была названа ENIAC (Electronic Numeral Integrator And Computer) и работала она в тысячу раз быстрее, чем «Марк-1». ENIAC содержал 18 тысяч вакуумных ламп, весил 30 тонн и потреблял мощность 150 киловатт. ENIAC имел и существенный недостаток - управление им осуществлялось с помощью коммутационной панели, у него отсутствовала память, и для того чтобы задать программу приходилось в течение нескольких часов или даже дней подсоединять нужным образом провода. Худшим из всех недостатков была ужасающая ненадежность компьютера, так как за день работы успевало выйти из строя около десятка вакуумных ламп.

Чтобы упростить процесс задания программ, Моучли и Эккерт стали конструировать новую машину, которая могла бы хранить программу в своей памяти. В 1945 году к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этой машине. В этом докладе фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров. Это первая действующая машина, построенная на вакуумных лампах, официально была введена в эксплуатацию 15 февраля 1946 года. Эту машину пытались использовать для решения некоторых задач, подготовленных фон Нейманом и связанных с проектом атомной бомбы. Затем она была перевезена на Абердинский полигон, где работала до 1955 года.

ENIAC стал первым представителем 1-го поколения компьютеров. Любая классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представляется ламповыми машинами.

Практически все рекомендации фон Неймана впоследствии использовались в машинах первых трех поколений, их совокупность получила название «архитектура фон Неймана». Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 году английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 года Джон фон Нейман.

Новые машины первого поколения сменяли друг друга довольно быстро. В 1951 году заработала первая советская электронная вычислительная машина МЭСМ, площадью около 50 квадратных метров. МЭСМ имела 2 вида памяти: оперативное запоминающее устройство, в виде 4 панелей высотой в 3 метра и шириной 1 метр; и долговременная память в виде магнитного барабана объемом 5000 чисел.

Всего в МЭСМ было 6000 электронных ламп, а работать с ними можно было только после 1,5-2 часов после включения машины. Ввод данных осуществлялся с помощью магнитной ленты, а вывод - цифропечатающим устройством сопряженным с памятью. МЭСМ могла выполнять 50 математических операций в секунду, запоминать в оперативной памяти 31 число и 63 команды (всего было 12 различных команд), и потребляла мощность равную 25 киловаттам.

В 1952 году на свет появилась американская машина EDWAC. Стоит также отметить построенный ранее, в 1949 году, английский компьютер EDSAC (Electronic Delay Storage Automatic Calculator) - первую машину с хранимой программой. В 1952 году советские конструкторы ввели в эксплуатацию БЭСМ - самую быстродействующую машину в Европе, а в следующем году в СССР начала работать «Стрела» - первая в Европе серийная машина высокого класса.

Среди создателей отечественных машин в первую очередь следует назвать имена С.А. Лебедева, Б.Я. Базилевского, И.С. Брука, Б.И. Рамеева, В.А. Мельникова, М.А. Карцева, А.Н. Мямлина. В 50-х годах появились и другие ЭВМ: «Урал», М-2, М-3, БЭСМ-2, «Минск-1», - которые воплощали в себе все более прогрессивные инженерные решения.

ЭВМ первого поколения, эти жесткие и тихоходные вычислители, были пионерами компьютерной техники. Они довольно быстро сошли со сцены, так как не нашли широкого коммерческого применения из-за ненадежности, высокой стоимости, трудности программирования.

Как благодаря артиллерии появился один из самых мощных компьютеров, на какой обман из-за этого пришлось пойти и почему с созданием вычислительной машины опоздали, рассказываем в очередном выпуске рубрики «История науки».

Как и очень многое в нашей жизни, электронные вычислительные машины появились благодаря военным. Заказ на создание машины, о которой пойдет речь в нашей статье, поступил от артиллеристов. Действительно, расчет траектории полета снаряда - дело очень непростое, для точного вычисления места, куда попадет снаряд гаубицы или обычного орудия, нужно учитывать очень много параметров: возвышение ствола орудия, калибр и аэродинамические показатели снаряда, скорость ветра, давление, температуру и влажность воздуха, тип заряда, который заложен в орудие.

В те времена в армии США такими расчетами занималась Лаборатория баллистических исследований, которая издавала таблицы стрельб для каждого снаряда. Для этого девушкам-вычислителям Лаборатории требовалось совершить на механических арифмометрах около 1000 действий для каждой траектории. Всего траекторий в таблицах было около трех тысяч. Поэтому в 1943 году Электротехническая школа (институт) Мура Пенсильванского университета получила заказ на создание вычислителя, который делал бы всю эту работу.

Создатели ENIAC (слева направо): Джон Эккерт, Джон Брейнерд, Сэм Фелтман, Герман Голдстайн, Джон Мокли, Дин Пендер, генерал Гладеон Барнс, полковник Пол Гиллон

Wikimedia Commons

Институт Мура уже располагал к тому времени механическим вычислителем («дифференциальным анализатором»), который умел делать часть расчетов, и Джоном Мокли, который еще в 1942 году представил руководству докладную записку The Use of High-Speed Vacuum Tube Devices for Calculation, в которой предложил создать машину на электронных лампах, что намного ускорило бы работу. Правда, руководство поступило с новаторским предложением по-своему: сдало его в архив «без движения», а потом просто потеряло. Кроме того, в Институте имелся студент Джон Эккерт с фантастическим талантом инженера. Эккерт с Мокли и стали разработчиками архитектуры нового вычислителя.

Чтобы не спугнуть боящихся всего нового военных, новый проект для начала назвали electronic diff. analyzer. Не слишком сведущее военное руководство решило, что это всего лишь улучшенный электронными лампами уже имеющийся дифференциальный анализатор, и «купилось» на уловку, выделив 61 700 долларов на первые полгода по контракту W-670-ORD-4926. Тем более что авторы проекта клялись, что одну траекторию машина будет считать всего пять минут.

После одобрения проект переименовали: он стал называться «электронный числовой интегратор». Потом добавилось «и вычислитель». Так появился ENIAC - Electronic Numerical Integrator And Computer.

Уже к февралю 1944 года теоретическая работа была завершена: продумана архитектура и прописаны электрические схемы. Началась работа по сборке 27-тонной машины, которая длилась полтора года. Увы, к несчастью для военных, Вторая мировая тогда уже завершилась, даже ядерное оружие было испытано. Однако это был первый настоящий компьютер, которому нашлось применение в расчетах термоядерной бомбы и таблиц стрельб ядерными боеприпасами. История сохранила нам имена шести девушек: Франсис Билас, Рут Лихтерман, Кэтлин Макналти, Франсис Снайдер, Бетти Дженнингс, Мерилин Мельцер. Так звали первых программистов первого компьютера.