Avr измерение тока и напряжения. Простой модульный вольтметр переменного напряжения на PIC16F676

Довольно простой прибор измеряющий напряжение, ток и показывающий полную мощность потребляемую нагрузкой на частоте 50 Гц.

При ремонтных работах или при проверке и испытаниях новых устройств часто требуется подавать напряжение от ЛАТР’а, при этом необходимо контролировать напряжение и ток. Для этих целей был разработан и собран вольтметр-амперметр на микроконтроллере с LCD индикатором. Поскольку, напряжение и ток измеряются, то легко вычисляется и полная мощность. В результате получился весьма компактный измеритель.
Технические характеристики
1. Пределы изменения измеряемого напряжения 0 – 255 Вольт, дискретность 0,5 вольта. Показания отображаются с шагом 1вольт.
2. Пределы изменения измеряемого тока 0 – 10 Ампер, дискретность 20 ма. Показания отображаются с шагом 10 ма.
3. Полная мощность вычисляется, как произведение величины тока на напряжение и отображается только целочисленное значение в Вольт-амперах.

Принципиальная схема

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


В схеме применено прямое измерение переменного напряжения и тока микроконтроллером.
Измеряемое напряжение через делитель R7, R9, R12 и C12 поступает на вход микроконтроллера через конденсатор C10. Конденсатор C12 совместно с делителем входного напряжения образует интегрирующую цепь, которая препятствует проникновению импульсных помех.

Измеряемый ток протекает по шунту R1, напряжение, снимаемое с него, усиливается операционным усилителем и через цепочку R8 и C8 поступает на вход микроконтроллера. Первый каскад на OP1 представляет собой инвертирующий усилитель с интегрирующим конденсатором C3 в цепи обратной связи. В связи с тем, что размах напряжения, снимаемого с OP1 должен быть около 5 Вольт, на микросхему усилителя поступает повышенное питание (9-15 Вольт). Второй каскад на OP2 включен повторителем и особенностей не имеет. Конденсатор C3 служит для уменьшения помех при работе АЦП микроконтроллера.

На измерительные входы RA0 и RA1 поступает постоянное стабилизированное смещение 2,5 вольта через резисторы R11 и R13. Это напряжение позволяет правильно измерять положительный и отрицательный полупериоды входных напряжений.
К микроконтроллеру PIC16F690 подключен LCD дисплей, с отображением 2-х строк по 16 символов. Резистор R14 служит для установки оптимальной контрастности дисплея. Резистор R15 определяет ток подсветки дисплея.
Питание прибора осуществляется от отдельного трансформатора на 9 – 12 Вольт. Стабилизатор питания +5 Вольт собран на микросхеме 78L05 и особенностей не имеет.


Я запитал прибор от телефонного адаптера. В связи с тем, что на плате есть свой мост Br1, полярность подключения не имеет значения. Важно, чтобы на конденсаторе C4 было напряжение в пределах 10 – 15 Вольт.

--
Спасибо за внимание!


🕗 20/08/12 ⚖️ 18,04 Kb ⇣ 442 Здравствуй, читатель!

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»


🕗 20/08/12 ⚖️ 6,41 Kb ⇣ 457 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

Подключение датчика тока к микроконтроллеру

Ознакомившись с основами теории, мы можем переходить к вопросу считывания, преобразования и визуализации данных. Другими словами мы спроектируем простой измеритель постоянного тока.

Аналоговый выход датчика подключается к одному из каналов АЦП микроконтроллера. Все необходимые преобразования и вычисления реализуются в программе микроконтроллера. Для отображения данных используется 2-строчный символьный ЖК индикатор.

Экспериментальная схема

Для экспериментов с датчиком тока необходимо собрать конструкцию согласно схеме, приведенной на Рисунке 8. Автор использовал для этого макетную плату и модуль на базе микроконтроллера (Рисунок 9).

Модуль датчика тока ACS712-05B можно приобрести готовый (на eBay он продается совсем недорого), или изготовить самостоятельно. Емкость конденсатора фильтра выбрана равной 1 нФ, по питанию установлен блокировочный конденсатор 0.1 мкФ. Для индикации включения питания припаян светодиод с гасящим резистором. Питание и выходной сигнал датчика подведены на разъем с одной стороны платы модуля, 2-контактный разъем для измерения протекающего тока расположен с противоположной стороны.

Для экспериментов по измерению тока регулируемый источник постоянного напряжения подключим к токоизмерительным выводам датчика через последовательный резистор 2.7 Ом / 2 Вт. Выход датчика подключен к порту RA0/AN0 (вывод 17) микроконтроллера. Двухстрочный символьный ЖК индикатор подключен к порту B микроконтроллера и работает в 4-битном режиме.

Микроконтроллер питается напряжением +5 В, это же напряжение используется в качестве опорного для АЦП. Необходимые вычисления и преобразования реализуются в программе микроконтроллера.

Математические выражения, используемые в процессе преобразования, приведены ниже.

Чувствительность датчика тока Sens = 0.185 В/А. При питании Vcc = 5 В и опорном напряжении Vref = 5 В расчетные соотношения будут следующими:

Выходной код АЦП

Следовательно

В итоге, формула для вычисления тока получается следующей:

Важное замечание. Представленные выше соотношения основаны на предположении, что напряжение питания и опорное напряжение для АЦП равны 5 В. Однако последнее выражение, связывающее ток I и выходной код АЦП Count, сохраняет силу даже при флуктуациях напряжения источника питания. Об этом шла речь в теоретической части описания.

Из последнего выражения видно, что разрешение датчика по току составляет 26.4 мА, чему соответствуют 513 отсчетов АЦП, что на один отсчет превышает ожидаемый результат. Таким образом, мы можем заключить, что данная реализация не позволяет измерять малые токи. Для увеличения разрешения и повышения чувствительности при измерении малых токов потребуется использование операционного усилителя. Пример такой схемы показан на Рисунке 10.

Программа микроконтроллера

Программа микроконтроллера PIC16F1847 написана на языке Си и скомпилирована в среде mikroC Pro (mikroElektronika). Результаты измерений отображаются на двухстрочном ЖК индикаторе с точностью до двух десятичных знаков.

Выход

При нулевом входном токе выходное напряжение датчика ACS712 в идеальном случае должно быть строго Vcc/2, т.е. с АЦП должно быть считано число 512. Дрейф выходного напряжения датчика на 4.9 мВ вызывает смещение результата преобразования на 1 младший разряд АЦП (Рисунок 11). (Для Vref = 5.0 В, разрешение 10-битного АЦП будет 5/1024= 4.9 мВ), что соответствует 26 мА входного тока. Заметим, что для уменьшения влияния флуктуаций желательно производить несколько измерений, и затем усреднять их результаты.

Если выходное напряжение регулируемого источника питания установить равным 1 В, через
резистор должен протекать ток порядка 370 мА. Измеренное значение тока в эксперименте - 390 мА, что превышает правильный результат на одну единицу младшего разряда АЦП (Рисунок 12).

Рисунок 12.

При напряжении 2 В индикатор покажет 760 мА.

На этом мы завершим обсуждение датчика тока ACS712. Однако мы не коснулись еще одного вопроса. Как с помощью этого датчика измерять переменный ток? Имейте ввиду, что датчик обеспечивает мгновенный отклик, соответствующий току, протекающему через измерительные выводы. Если ток течет в положительном направлении (от выводов 1 и 2 к выводам 3 и 4), чувствительность датчика положительная, и выходное напряжение больше Vcc/2. Если же ток меняет направление, чувствительность будет отрицательной, и выходное напряжение датчика опустится ниже уровня Vcc/2. Это означает, что при измерении переменного сигнала АЦП микроконтроллера должен делать выборки достаточно быстро, чтобы иметь возможность вычислять среднеквадратичное значение тока.

Загрузки

Исходный код программы микроконтроллера и файл для прошивки -

Вольтметры на микроконтроллере - что может быть проще? Это так, если речь идет об измерении на постоянном токе, или определения мгновенных значений переменного. Но измерение действующего значения переменного напряжения, тем более несинусоидальной формы - нетривиальная задача. Однако, и она решаема, причем на достаточно простом и недорогом микроконтроллере семейства AVR.

Данная статья носит скорее характер рассуждений на тему, нежели описание конкретного проекта. Ее назначение - направить мысль в нужное русло, обозначить цели, подводные камни, проложить "лоцию" их обхода... Чтобы каждый желающий мог самостоятельно реализовать изложенный принцип.

Итак, сначала микро-экскурс в теорию. Как известно, действующим значением переменного тока и напряжения называют величину, которая принимается в расчетах выделяющейся теплоты или мощности. Для постоянного тока действующее значение равно амплитудному, среднему и мгновенному, для переменного тока - это все разные величины.

Мгновенное значение переменного напряжения - это абсолютный уровень напряжения в конкретный момент времени, одиночный отсчет. Амплитудное значение - это наибольшее значение синусоиды (или другой кривой для несинусоидальной формы сигнала) за период. Амплитудное значение берется по модулю, т.е. не бывает минусовой и плюсовой амплитуды. Среднее значение, как следует из самого термина, это сумма всех мгновенных значений (отсчетов) за период, деленная на количество отсчетов. Математически - это интеграл мгновенных значений за период. Очевидно, что для синусоидальной формы среднее за период значение будет равно нулю. Если форма кривой напряжения искажена, то среднее значение за период может оказаться ненулевым - тогда оно получает название постоянной составляющей переменного напряжения. Наконец, действующее или эффективное значение напряжения - это величина, численно равная половине интеграла квадрата мгновенных значений напряжения за период. Поэтому его еще называют среднеквадратичным напряжением.

Теперь подумаем, как эта теория поможет нам решить нашу задачу. В МК мы имеем дело с АЦП, которое (в некотором приближении) способно давать нам отдельные отсчеты напряжения, т.е. оно умеет определять мгновенные значения напряжения. Легко понять, что для определения действующего значения нам необходимо проинтегрировать (т.е. просуммировать ) квадраты результатов АЦП, взятых через равные промежутки в течение одного периода измеряемого напряжения. Почему я не говорю о необходимости делить сумму квадратов пополам, хотя теория вроде бы этого требует? Да потому, что АЦП дает нам результат в абстрактных числах, оторванных от реальности. Чтобы из этой абстракции получить реальное значение, нам все равно надо умножить их на какой-то размерный коэффициент, в котором может быть учтено то самое деление на 2. Поясню: если «один шаг» АЦП соответствует 0,02В напряжения, то для перевода в реальные вольты нам надо умножить результат АЦП на 0,02. Если же в процессе вычислений нам потом потребуется разделить эти значения на 2, так не проще ли умножать сразу на коэффициент 0,01В?!

Наметим алгоритм нашей программы. В общих чертах он будет таким:

  1. Получить через равные промежутки N отсчетов АЦП в течение одного периода измеряемого напряжения.
  2. Возвести результаты в квадрат и просуммировать.
  3. Извлечь квадратный корень из полученной суммы.
  4. Умножить полученный результат на масштабирующий коэффициент и вывести результат на индикатор.

Чтобы наш вольтметр показывал значение непрерывно, этот алгоритм надо выполнять циклически.

Теперь давайте разбираться с деталями. Прежде всего, определимся с числом отсчетов N . Казалось бы, все просто: чем оно больше, тем точнее результат. И это действительно так, однако не следует забывать о том, что в нашем распоряжении не суперкомпьютер, а всего лишь микроконтроллер AVR, возможности которого весьма ограничены.

Прежде всего, есть ограничение на скорость работы АЦП. Atmel рекомендует использовать АЦП при работе от тактовой частоты не более 200 кГц , иначе будет увеличиваться погрешность результатов. Один цикл измерений АЦП длится (в установившемся режиме) 13 тактов, т.е. при любых ухищрениях мы не сможем использовать АЦП чаще, чем 15384 раза в секунду, если хотим получать все 10 бит результата верно. Прикинем, что же мы получаем в результате. Длительность периода сетевого напряжение 20 мс. При вышеобозначенной частоте семплов за один период мы просто не успеем получить более 307 отсчетов. Конечно, если немного пожертвовать точностью, можно увеличить скорость АЦП и соответственно, число отсчетов за период.

Другое важное ограничение - это быстродействие математических операций. Возведение в квадрат - процедура очень затратная по числу тактов работы микроконтроллера, и если выполнять интегрирование «на лету», т.е. по мере поступления результатов из АЦП, частота семплирования в 15К будет недостижима даже в теории. Выход один - быстро накапливать нужное количество данных в массиве, а потом неторопясь их обрабатывать. И тут мы наталкиваемся на третье ограничние - объем ОЗУ. Теоретически максимальное количество отсчетов из 307-и 10-битовых чисел потребует для хранения 614 байт ОЗУ, что уже больше всей имеющейся памяти во многих МК, а для, например, Atmega8 составляет больше половины. А ведь для работы нам еще нужно место под стек, под другие промежуточные переменные... Так что число отсчетов N=307 можно считать абсолютно максимальным для всех МК с объемом ОЗУ 1К и менее.

Для заполнения массива отсчетов используем прерывание по завершению цикла АЦП. То есть определим переменную-индекс, указывающую на очередной элемент нашего массива, а в обработчике этого прерывания будем сохранять по этому индексу результат АЦП в массиве и увеличивать индекс. Так как по нашим расчетам с момента первого семпла и до последнего (307-го) должно пройти 20 миллисекунд, можно считать, что задача получения мгновенных значений напряжения за период нами решена. Однако, надо же контролировать выход индекса за пределы допустимого значения, т.е. делать проверку - не больше ли 307-и семплов мы сделали? Естественно, нужно быть уверенным, что время всех дополнительных расчетов не увеличит периодичность поступления семплов, иначе не миновать больших ошибок.

Предположим, мы наконец-то получили наш массив отсчетов, и теперь необходимо провести его обработку. Вы себе представляете возведение в квадрат на ассемблере? А извлечение квадратного корня? Конечно, все решаемо, но гораздо проще применить встроенные функции языка Си square и sqrt . Отсюда 2 неизбежных вывода: программу мы делаем на Си и все предыдущие рассуждения требуют корректировки ... Этот ошарашивающий вывод следует понимать так: Си - язык высокого уровня, и потому существенно более медленный, чем ассемблер. Значит, процедуры обработки прерываний могут потребовать больше времени, чем мы рассчитывали, т.е. нарушить стройные расчеты количества и частоты семплов. Значит, надо обязательно проконтролировать время исполнения критических участков нашей программы (например, в той же AVR Studio ), и, если окажется, что период семплирования существенно больше расчетного, провести корректировку всех расчетов - от количества семплов до частоты АЦП. Но забудем на время об этом.

Итак, замеры и расчеты позади. Остается организовать вывод результатов. Тут, как говорится, простор широк: от семисегментных индикатров с динамической индикацией до LCD символьных дисплеев или передачи результатов по UART в компьютер. Только помните, что динамическая индикация так же работает по прерываниям, т.е. может исказить временные интервалы получения семплов.

Надеюсь, принцип понятен. Теперь несколько слов о не затронутых проблемах. Прежде всего, все наши размышления относились к измерению сетевого напряжения, т.е. напряжения с частотой 50 Гц . При других частотах, наша программа будет давать результат с погрешностью. Величина этой погрешности будет минимальна, если в 20 мс будет укладываться целое число периодов напряжения (для симметричных форм сигнала - полупериодов ). Если число целых периодов (полупериодов) будет не целое, погрешность будет максимальна, причем характер показаний вольтметра будет иметь вид «биений». Так как напрасно ожидать высокой точности от численного интегрирования при числе семплов за период менее нескольких десятков, то верхнее значение частоты для измеряемого напряжения в реальности будет не больше 200 Гц. Короче говоря, мы все-таки сделаем прибор только на 50 Гц. Хотя на 25 он будет работать совсем не плохо. Разумеется, прибор покажет верное значение для любой формы переменного напряжения 50 Гц, а так же для постоянного тока.

Принципиальная схема проекта Proteus

В подтверждение всех изложенных выкладок (и для их проверки) привожу конкретный пример реализации вольтметра. Я не собирал реальную схему, ограничился проектом в протеусе . Однако полученные при моделировании результаты полностью подтвердили изложенное и позволяют утверждать, что реальная схема с минимальными доработками (источник питания и защитные цепи) будет работать. Предлагаемая прошивка для МК полностью работоспособна - дорабатывайте схему, делайте печатную плату и пользуйтесь. Однако, я делал ее по-своему, т.е. чуть-чуть иначе , чем только что рассказал. Самое главное, что в моей программе не так - это число семплов в массиве: у меня их 256 . Из-за этого мне пришлось отказаться от «естественной» частоты семплов и привязать их к таймеру, это в свою очередь потребовало поднять рабочую частоту АЦП до 250 кГц (при тактовой частоте МК в 8 мГц). Кстати, получить 250 кГц для АЦП от встроенного RC-генератора меги гораздо проще, чем 200, так что не исключаю, что при написании собственной программы вы тоже будете вынуждены пойти по моему пути...

Проект для Proteus 7.1 Pro SP2 и файл прошивки можно скачать в . В проекте штрих-пунктиром обведена часть, которая собственно вольтметр. А левее - это источник тестового сигнала. Входной мост и делитель напряжения должны быть с запасом рассчитаны на входное напряжение, лучше выбирать 1000-вольтовые диоды, они-то уж точно выдержат. Делитель лучше сделать именно как показано на схеме - из трех резисторов, т.к. один резистор соответствующего номинала может не выдержать высоких напряжений. Еще лучше взять больше резисторов, кстати, проще будет и коэффициент деления подобрать. На схеме не показаны многие нюансы, например, защитный стабили-трон на входе АЦП, но это именно нюансы. Моя прошивка обеспечивает измерение напряжений до 710В, при этом погрешность не более 2В для синусоидальной формы напряжения. Для других форм напряжения погрешность может увеличиться, но не сильно. Думаю, в 5% точно уложится. Для простого прибора со шкалой 10-700В неплохо, не так ли? Прошивка имеет особенность: если на вход подано напряжение с амплитудным значением более 1000В (примерно), прибор покажет символ «Е » - перегрузка. Это произойдет даже если действующее значение будет существенно меньше 700В.

Только зарегистрированные пользователи могут оставлять коментарии.
Пожалуйста зарегистрируйтесь или войдите в ваш аккаунт.

Мы переходим к завершающей части обзорного цикла датчиков, в которой рассмотрим датчики постоянного и переменного тока и напряжения. По всем остальным датчикам, которые не попали в основную серию мы сделаем дополнительные обзоры когда они вдруг понадобятся в будущих статьях.
Данная статья открывает новый цикл материалов про измерение параметров качества электроэнергии, куда войдут вопросы подключения датчиков тока и напряжения к микроконтроллеру, рассмотрение алгоритмов работы анализаторов качества электроэнергии, смысл тех или иных показателей качества электроэнергии и что они обозначают. Кроме того, мы затронем волнующую многих тему точности оцифровки и обработки данных, упомянутую в комментариях к первой статье.

Датчики тока

Измерительный шунт

Самый простой и самый точный способ измерения тока. Как известно, при протекании тока через активное сопротивление, на нем происходит падение напряжения, пропорциональное измеряемому току. Отлично, берем резистор и помещаем его в разрыв измеряемой цепи:


Рисунок 10: Датчик тока токовый шунт
Падение напряжения на шунте пропорционально пропускаемому току:
(10)
Соответственно в зависимости от требуемого напряжения на выходе датчика подбираем нужное сопротивление шунта. Но! Падение напряжения на шунте приведет к потерям и теплу, соответственно при больших токах мы вынуждены довольствоваться малыми значениями входного напряжения, дабы ограничить потери. Вот эти выпускаемые промышленностью ребята обеспечивают стандартное выходное напряжение в 75мВ:

Рисунок 11: Токовый шунт типа ШСМ
На напряжение в 75мВ откалибровано большинство измерительных головок для шунтов. Обратите внимание на вторую пару винтов - они предназначены специально для подключения к измерительному прибору для снижения потерь.
Для измерения тока с помощью таких шунтов требуется использовать операционные усилители. При этом, средний коэффициент усиления составляет 20-40, что под силу широко-распространенным операционным усилителям. В принципе, такой можно сварганить на базе одного биполярного транзистора.
Получим следующую схему:


Рисунок 12: Использование ОУ в качестве усилителя
Следует учитывать, что при измерении переменного тока, выходной сигнал будет биполярный и операционный усилитель требуется запитать от двухполярного источника питания.
Глянем на всякий случай, как работает наша схема:


Рисунок 13: Моделирование усилителя датчика тока
На вход подаем 75мВ, умножаем на 20, на выходе имеем сигнал с амплитудой 1,5В для тока в 10А. В следующем материале мы разберемся чем плох биполярный сигнал.
Достоинства :

  • высокая точность;
  • широкий диапазон напряжений и частот;

Недостатки:

  • отсутствует гальваническая развязка;
  • низкий КПД.
Измерительный трансформатор тока

Измерительный трансформатор тока представляет собой трансформатор, первичная обмотка которого подключается к источнику тока, а вторичная замыкается на измерительные приборы или устройства защитной автоматики.
Трансформаторы тока используются для измерения токов в сильноточных цепях, зачастую я высоким потенциалом. Например, нам захотелось измерить ток в сети 10кВ. Либо, мы хотим получить простой и относительно дешевый способ гальванической развязки измеряемой цепи тока нашего устройства на 220В. Основная проблема трансформаторов тока заключается в том, что они умеют измерять только переменное напряжение.
Трансформатор тока всегда нагружается. Если вторичная обмотка трансформатора тока окажется разомкнутой, то на ней возникнет потенциал в пару тысяч киловольт, который покалечит персонал и выведет из строя прибор, пробив его изоляцию.
Трансформаторы бывают со встроенной первичной обмоткой. Например такие:

Рисунок 14: Трансформатор тока серии CS2106L от Coilcraft
Либо вот такие слоники, имеющие подобие первичной обмотки в виде огромной шины, либо вовсе окно для пропускания через него провода


Рисунок 15: Промышленный трансформатор тока на много ампер
Основной недостаток трансформатора тока - это работа только на определенной частоте. Шаг влево-шаг вправо - расстрел. Виной всему металлический сердечник.
А вот если мы его удалим, то получим воздушный трансформатор, или, т. н. Катушку Роговского:

Рисунок 16: Схема подключения катушки роговского
В отличие от остальных датчиков, требующих взаимодействия с измеряемой цепью, катушку роговского можно установить поверх проводов измеряемой цепи как поясок.
Некоторые измерительные приборы комплектуются такими датчиками:


Рисунок 17: Датчик катушка роговского
Диапазон измеряемых токов - от десятков до тысяч ампер, но они страдают от невысокой точности.
Достоинства:

  • гальваническая развязка;
  • работа с большими токами в тысячи Ампер;

Недостатки:

  • измеряет только переменный ток в определенном диапазоне частот(кроме катушки Роговского);
  • изменяет фазу сигнала и требует компенсации
Датчики тока на эффекте Холла

Датчики этого типа используют эффект возникновения разности потенциалов при помещении проводника с током в магнитное поле.

Рисунок 18: Эффект Холла
При создании датчика мы берем магнитопровод, пропускаем через него провод измеряемой цепи и в разрез магнитопровода помещаем датчик Холла, получая датчик тока открытого типа:


Рисунок 19: Датчик тока на эффекте Холла открытого типа
Достоинством такого датчика является простота. Недостатком - наличие подмагничивания сердечника, следовательно, повышение нелинейности показаний.
Добавим на сердечник обмотку и пустим по ней ток, пропорциональный измеряемому току:


Рисунок 20: Датчик тока на эффекте Холла компенсационного типа
С нулевым подмагничиванием сердечника мы повышаем линейность датчика и его класс точности. Однако по своей конструкции такой датчик приближается к трансформаторам тока, соответственно его стоимость повышается в разы.
Как и трансформаторы, бывают разновидности датчиков, позволяющие пропустить через себя силовой провод:


Рисунок 22: Датчик тока на эффекте Холла
Существуют датчики с разделяемым сердечником - однако их стоимость просто зашкаливает.
Датчики с интегрированной силовой цепью на базе эффекта Холла с гальванической развязкой 2,1кВ и 3кВ выпускаются компанией Allegro. Ввиду своих малых размеров они не обеспечивают высокой точности, но зато компактны и просты в использовании.


Рисунок 23: датчик тока Allegro ACS754

  • Датчик ACS712 – измерение постоянного и переменного тока до 30А с точностью ± 1,5%
  • Датчик ACS713 – оптимизирован для измерения постоянного тока до 30А. Имеет вдвое большую чувствительность чем его универсальный собрат.
  • Датчик ACS754 – измерение постоянного и переменного тока до 200А с точностью ± 1,5%
  • Датчик ACS755 – оптимизирован для измерения постоянного тока.
  • Датчик ACS756 – датчик для измерения постоянного и переменного тока до 100А с напряжением питания 3-5В.


Рисунок 24: Зависимость выходного напряжения датчика от тока
Достоинства :

  • широкий диапазон измеряемых токов с частотой до 50-100кГц и выше;
  • измеряет постоянный и переменный ток.
  • гальваническая развязка

Недостатки :

  • Дорого
Дополнительные ссылки:

Измерительные трансформаторы постоянного тока analogiu.ru/6/6-2-2.html
Катушки Роговского www.russianelectronics.ru/leader-r/review/2193/doc/54046
Эффект Холла в википедии: ru.wikipedia.org/wiki/Эффект_Холла
Датчики Холла robocraft.ru/blog/electronics/594.html
Данилов А. Современные промышленные датчики тока www.soel.ru/cms/f/?/311512.pdf
Проектирование схем на базе аналогового усилителя HCPL-7851 www.kit-e.ru/assets/files/pdf/2010_04_26.pdf

Заключение

Я поставил перед собой задачу сделать обзорный материал по датчикам, наиболее часто используемым сообществом при разработке различных устройств. Большинство датчиков не вошли в цикл лишь по той причине, что в ближайшем будущем для моих материалов они не понадобятся, но некоторые из них в планах. Обязательно сделаю отдельный материал с датчиками ускорения, угловых скоростей, компасом и примерами, так что следите за новыми статьями!

Простой вольтметр переменного напряжения с частотой 50 Гц, выполнен в виде встраиваемого модуля, который может использоваться как отдельно, так и быть встроен в готовое устройство.
Вольтметр собран на микроконтроллере PIC16F676 и 3-разрядном индикаторе и содержит не очень много деталей.

Основные характеристики вольтметра:
Форма измеряемого напряжения - синусоидальная
Максимальное значение измеряемого напряжения - 250 В;
Частота измеряемого напряжения - 40…60 Гц;
Дискретность отображения результата измерения - 1 В;
Напряжение питание вольтметра - 7…15 В.
Средний ток потребления - 20 мА
Два варианта конструкции: с БП на борту и без
Односторонняя печатная плата
Компактная конструкция
Отображение измеряемых величин на 3-разрядном LED-индикаторе

Принципиальная схема вольтметра для измерения переменного напряжения


Реализовано прямое измерение переменного напряжения с последующим вычислением его значения и вывода на индикатор. Измеряемое напряжение поступает на входной делитель, выполненный на R3, R4, R5 и через разделительный конденсатор C4 поступает на вход АЦП микроконтроллера.

Резисторы R6 и R7 создают на входе АЦП напряжение 2,5 вольта (половина питания). Конденсатор C5, относительно малой ёмкости, шунтирует вход АЦП и способствует уменьшению ошибки измерения. Микроконтроллер организует работу индикатора в динамическом режиме по прерываниям от таймера.

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»


🕗 01/07/14 ⚖️ 19,18 Kb ⇣ 239 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!