Мощный светодиодный светильник своими руками — разработка, установка. Как сделать простой светодиодный светильник своими руками Контроллеры, блоки питания для светодиодных лент

Сейчас одним из самых популярных и модных решений освещения являются линейные светодиодные светильники.
 В этой статье мы разберемся, как устроены современные LED системы освещения и соберем один светильник своими руками.

Конструкция

Линейный светильник включает в себя: алюминиевый светодиодный профиль с поликарбонатным светорассеивающим стеклом, источник света (светодиодная лента или светодиодная линейка), LED драйвер. Так же к профилям предлагается огромное множество комплектующих (подвесы, заглушки, крепления и многое др.)

Из плюсов такой простой конструкции можно отметить широкие возможности конфигурации и выбора. Практически каждый такой светильник является уникальным. Неоспоримое преимущество линейных систем освещения заключается в том, что мы можем делать светильники любой длины. 


Разновидности

Линейные светильники бывают: встраиваемые, подвесные, накладные. Отличаются они по способу монтажа, который предусмотрен производителем.

Приступим

Выбор корпуса


Мы приняли решение собрать подвесной светильник, который найдет свое применение как в гараже, так и в офисе. Среди широкого ассортимента алюминиевых светодиодных профилей мы нашли подходящий. Наш выбор остановился на профиле который называется U-S35. Габариты этого профиля 35*35*2500мм.

Выбор источника света


Изучив рынок светодиодных лент, посмотрев обзоры и прочитав отзывы, мы захотели применить в нашем будущем светильнике новинку.

Японский светодиодный модуль HOKASU. Модуль обладает огромным преимуществом перед светодиодной лентой.

Злейший враг светодиодов это тепло. От температуры, которую выделяют мощные LED’ы, светодиоды деградируют, теряют проценты своей первоначальной яркости. Очень важен мгновенный отвод точечного тепла, которое концентрируется у самого основания кристалла. Так как, светодиодная лента - это гибкий проводник с smd- светодиодами, при монтаже их на охлаждающую поверхность у нас получается тепловой зазор. Лента не очень плотно клеится к поверхности, мгновенному отводу тепла мешает клей (двойной скотч 3M). Линейки лишены этого недостатка, т.к плата на заводе припаяна к алюминиевой полосе, которая в свою очередь уже крепится к поверхности.

Итак, характеристики в студию:
  • Напряжение питания, V: 24
  • Световой поток, lm / m: 2700
  • Мощность, Вт / м: 26
  • Размер светодиодов: 2835 (2.8x3.5мм)
  • Цветовая температура, K: 4000

Комплектация

Из материалов мы использовали


  • Алюминиевый профиль
  • Заглушки + подвесы + крепления для накладного монтажа
  • Светодиодный модули
  • Источник питания 24v 150w

Для сборки нам понадобится


  • Паяльник
  • Мультиметр
  • Щипцы для резки и зачистки проводов
  • Флюс, олово
  • Прямые руки

Сборка

Для начала мы примерим линейки в профиле и обрежем их до нужного нам размера.
Кстати, их можно резать каждые 4 см.

После того как мы обрезали линейку, желательно проверить её на сопротивление, т.к после первой попытки, когда я резал обычной пилой, линейка замыкала с самого края.

Это связано с тем, что основание изготовлено из алюминия и проводит ток. И при неаккуратном разрезе с торца медные дорожки задевают подложку.

Сейчас наш светильник практически готов, нам осталось запаять все линейки между собой. Как заявляет производитель: допустимо последовательное соединение до 3м. (Это мы проверим позже, замерив общую мощность готового линейного светильника.)

Припаиваем с одного конца провод и закрываем экран. 
(Для провода нужно сделать отверстие и вывести его за профиль, но мы пока делать этого не будем.)

Я подключил светильник к лабораторному источнику питания для того, чтобы посмотреть какой ток потребляют светодиоды.
 Довольно распространенная проблема, что при подключении мощных лент более 2м идет потеря мощности. Это связано с недостаточной проводимостью медных дорожек. У меня получилось, что суммарная мощность светильника 2.7*24 = 64.8Вт (26 Вт/м).

Показатели скакали от температуры, но усреднено 26 Вт/м. 
С учетом того, что заявленная мощность одного модуля 26Вт, я считаю это идеальный показатель.

Применимость

Для наглядности я повесил светильник над рабочим столом и сделал несколько фотографий. В будущем найду ему постоянное место.

Стоимость

Линейный светильник 65Вт, 2.5м.
  • Профиль U-S35: 2400р
  • Модули HOKASU: 2370
  • Комплектующие: ~300р
  • Источник питания: 1150р
Итого: 6220р.


Одного такого светильника хватит на 2 или даже на 3 рабочих места. Его можно разрезать пополам и установить над разными столами, подключив к одному источнику питания.

Как элементы осветительных приборов, светодиоды появились на рынке относительно недавно. Первые светодиоды были созданы в 1962 году, они излучали слабый красный свет. Для освещения такие приборы не использовались в связи с тем, что излучался очень узкий спектр света, а цена на них была довольно высока.

Светодиодное освещение дома

С развитием технологии изготовления светодиодов появились другие цвета видимого спектра излучения, снизилась стоимость продукции, расширился диапазон применения светоизлучающих приборов. Но по-прежнему им было еще далеко до экономных осветительных систем. Применялись в основном для индикации в электро,- и радиоприборах. Положительными качествами были малое энергопотребление и долговечность.

Светодиоды разного цвета и формы

Плюсы светодиодного освещения

Освещение с помощью светодиодных панелей стало широко применяться при появлении светодиодов с КПД более 50%, в то время как лампа накаливания выдает 3,5-4% КПД. Преимуществ а э той системы освещения:

  • малое энергопотребление;
  • экологичность;
  • срок службы порядка 30000 часов;
  • надежность;
  • неограниченное количество включений-выключений;
  • большая светоотдача;
  • широкий рабочий диапазон температуры окружающей среды;
  • малые геометрические размеры;
  • возможность получения нужного спектра излучения (красный, желтый, зеленый, белый);
  • возможность регулирования силы светового потока;
  • низкая рабочая температура.

Положительных качеств много, и они дают преимущество перед традиционными лампами накаливания и энергосберегающей люминесцентной лампой.

Лампа из светодиодов

Как сделать светодиодную лампу? Ее можно изготовить из отдельных светодиодов. Для этого понадобятся штучные излучающие диоды. Соединяя последовательно необходимое количество, можно получить заданную мощность.

Для защиты от выхода из строя элементов требуется установка резистора, который ограничит ток в цепи полупроводника.

Независимо от напряжения питания такой лампы, 220 В или 12 В от автомобиля, резистор рассчитывают так, чтобы рабочий ток не превышал паспортные значения диода. После сборки и проверки можно встроить конструкцию в цоколь обычной лампочки накаливания. Самодельная светодиодная лампа ничуть не хуже заводской, даже имеет преимущество – ее в случае отказа в работе легко исправить, чего не скажешь о заводских изделиях.

Светодиодные светильники

Светильники, в которых активным элементом служит светодиод, называют светодиодными светильниками. Можно использовать существующую люстру, вставив в нее полупроводниковую лампу или же изготовить диодный светильник своими руками , чтобы использовать его для освещения дома. При наличии навыков можно изготовить светильник из светодиодной ленты, применяя разработанные принципиальные схемы.

Светодиодная лента для изготовления светильника

Лента представляет собой набор светодиодов, соединенных между собой должным образом в заводских условиях. Ее можно резать по секциям и соединять в параллельные и последовательные цепи. В схему встроен ограничивающий ток резистор. Напряжение питания обычно применяется 12, 24, 36 и 220 В.

Комбинируя количество секций, можно получить требуемую освещенность и потребляемую мощность. Для подключения к сети 220 В можно собрать схему понижения напряжения, если планируется использовать ее для освещения автомобиля (на напряжение 12В). При использовании ленты из светодиодов на напряжение 12В применяют специальные драйвера, или стоит потратить время на изготовление самодельного электропитающего устройства.

Светильник своими руками

Можно создать конструкцию потолочного, настенного, напольного или настольного светильника по своему вкусу и под существующий интерьер. Использовать можно любые подручные материалы: от воздушных шаров до железных конструкций.

Необходимо определиться с типом применяемых светодиодов или готовой ленты. Если это диоды – просчитать нужное количество, если лента – нужную длину.

Эти данные понадобятся для расчета потребляемой светильником мощности.

Светодиоды соединяют последовательно по 3-4 штуки, в зависимости от рабочего напряжения диода и последовательно с ними ставится ограничительный резистор, предотвращающий перегорание диода при превышении номинального тока. При необходимости увеличения светового потока, параллельно устанавливают еще 2-3 таких блока. Так можно сделать и настольную лампу, и лампу для автомобиля.

Мощность потребления известна. Один из вариантов – приобретение драйвера. Его параметры должны соответствовать параметрам потребления светильника или быть немного большими.

Если параметры потребления будут больше параметров драйвера, он выйдет из строя и, что вполне вероятно, выйдет из строя сама светодиодная конструкция.

Схема блока питания на 12 В

Трансформатор Т1 с параметрами: входное напряжение 220 В, выходное – 9-12 В. Можно использовать готовый трансформатор от старого телевизора. Следующий элемент – диодный мост Д1-Д4. При наличии свободного диодного моста от зарядного устройства автомобиля, можно использовать его. Напряжение, на которое рассчитана работа диодов, должно быть выше 12 В, а ток выпрямления больше тока потребления светодиодного светильника.

Элемент А1 – любой стабилизатор напряжения с рабочим током, превышающим ток потребления светильника, и напряжением на выходе 12 В. Все элементы схемы доступны в любом магазине радиодеталей. Собрать и спаять схему можно с помощью паяльника, закрепив все детали в пластиковый корпус. Печатный монтаж здесь будет излишним, подойдет навесной с соблюдением правил качественной пайки.

Напряжение входной цепи 220 В опасно для жизни человека. При работе следует соблюдать правила техники безопасности.

После окончания монтажа нужно закрепить все детали в корпусе и вывести наружу два провода для подключения входного напряжения и два для 12В. Обязательно пометить провода входные «+» и «-» выхода для исключения переполюсовки. Из практики: красный провод обозначает плюс, синий – минус.

Диодный светильник для дома своими руками сделан, он радует глаз и экономит электроэнергию.

Светильник для авто

Напряжение автомобильного аккумулятора – 12 В. При работе автомобиля на больших оборотах генератор вырабатывает большее напряжение – 14-14,5 В. Это необходимо для зарядки аккумулятора автомобиля. Эту информацию важно учитывать для того, чтобы собрать энергосберегающую лампу для авто.

Подсветка днища автомобиля светодиодной лентой

Если использовать для этого светодиодную ленту, то никакой дополнительной схемы применять не надо. Взять ленту на 12В, отрезать необходимый размер и, соблюдая полярность, подключить ее к сети автомобиля вместо обычной лампочки.

Своими руками. Видео

Как собрать светодиодный светильник своими руками для подвесного потолка, рассказывает видео ниже.

Используя ленту для подсветки днища кузова, можно получить очень красивый эффект. Полученную систему освещения можно назвать энергосберегающей, потому как потребление энергии авто существенно снизится.

С удорожанием электроэнергии многие задумываются о покупке светодиодных источников света, которые приносят ощутимую экономию и являются прекрасными заменителями естественного освещения. Однако сегодня не многие могут себе позволить светодиодный светильник, ведь их стоимость еще достаточно высока. Поэтому, благодаря народным умельцам, в этой статье рассмотрим, как можно сделать осветительный прибор из светодиодов своими руками.

Что представляет собой светодиодный светильник?

Светодиоды – полупроводниковые электронные приборы, излучающие свет в результате прохождения электрического тока. Появившись 15 лет назад, приборы домашнего назначения буквально сходу завоевали рынок источников света. Сегодня можно купить светодиодные лампы любой формы, размера, мощности и цвета. Но также можно сделать их самостоятельно, что под силу даже неопытному радиолюбителю. Простейшие приборы на светодиодах могут работать при напряжении 3-5 В, т.е. от обычной батарейки. Однако его мощности хватит всего лишь для подсветки фонариком, поэтому ниже мы рассмотрим, как сделать более серьезные конструкции, позволяющие освещать комнаты.

Осветительный прибор

Состав и принцип работы светильника

Прежде, чем приступить к изготовлению светодиодного светильника своими руками, рассмотрим его конструкцию и принцип работы.
Диод – это полупроводниковый прибор, пропускающий ток через p-n переход только в одном направлении. В результате выделения энергии при рекомбинации электронов и дырок излучаются фотоны с выделением световой и тепловой энергии.

Отведение тепла в светодиодном приборе – является важной задачей при сборке светильника, ведь высокая температура приводит к деградации и выходу из строя светодиода. Поэтому наличие радиатора – обязательное условие при сборке любого светодиодного светильника.

Простейшим радиатором является алюминиевая подложка, на которой располагаются светодиоды, однако такого теплоотведения будет недостаточно, если прибор собирается на 3-х и более полупроводниках. В такие светильники устанавливают специальные металлические радиаторы. В комнатных приборах его заменяет корпус лампочки.
Кроме радиатора, LED-изделие имеет отражатель и рассеиватель, которые могут заменить металлизированный рефлектор, и линза.
Обычно светодиоды выпускаются готовой сборкой, но для того, чтобы яркий свет прибора не раздражал глаза, используют матовую колбу, которой накрывают корпус светильника.

Устройство лампочки

Сборка светильника

Схема простейшего светильника, работающего от сети 220 В, состоит из двух резисторов сопротивлением 12 кОм и двух светодиодов, установленных параллельно. Схема актуальна для четного количества LED-приборов.
Для нечетного — в схеме должен присутствовать драйвер, стабилизирующий выходной ток и напряжение. Лучше всего приобрести готовый драйвер, который подбирается под светодиодный прибор. Кроме этого, драйвер также можно сделать своими руками, используя выпрямительный мост, конденсаторы и обычные диоды, которые в сборке преобразовывают напряжение сети в напряжение заданной частоты и значения. Резисторы в такой схеме выполняют роль ограничителя силы тока.

Как видно из описанного выше, светодиодный прибор может собрать любой человек, который хотя бы раз в жизни держал в руках паяльник и умеет пользоваться интернетом, где представлено много примеров стандартных и нестандартных схем и решений для сборки светодиодного светильника.

Схема светильника

Светильники в корпусе

Светодиодная лента

Простейшую лампу можно сделать своими руками, используя светодиодную ленту, которую достаточно закрепить на любой плоской поверхности при помощи двухстороннего скотча. Для большей надежности и расширения функциональных возможностей прибора светодиодную ленту удобно размещать в корпусе от неработающей люминесцентной лампы, длина которой не превышает 30 см.
Такой светильник приспосабливают на высоте не более 80 см над письменным столом, кухонной поверхностью, аквариумом или используют его для декоративной подсветки. Свет лампы прекрасно рассеивается и не утомляет зрение.

Применение светильника

Для изготовления светодиодных светильников подойдут следующие типы лент:

  • SMD 3528 (60 (4,8 Вт); 120 (7,2 Вт); 240 (16 Вт) светодиодов на погонном 1 метре);
  • SMD 5050 (30 (7,2 Вт); 60 (14 Вт); 120 (25 Вт).

Плотность светодиодов

Плотность и расположение светодиодов на лентах типа SMD 3528 и SMD 5050

Оптимальным выбором станет LED-лента SMD 5050, параметры которой соответствуют следующим значениям:

  • угол излучения – 120 градусов;
  • напряжение питания – 12 В;
  • ток – 1,2 А/м

Светодиодную ленту с помощью скотча необходимо приклеить к внутренней части корпуса. Для работы можно купить блок питания или собрать своими руками, используя схему, приведенную ниже. Преимуществом самостоятельно собранного блока питания является то, что есть возможность скрыть его в корпусе светильника. Покупной – придется «пристроить» рядом с прибором. В любом случае собранная конструкция будет выглядеть аккуратно и работать экономно, прекрасно освещая рабочий стол.

Электрическая схема блока питания

Важным моментом во время монтажа является качественная изоляция всех токопроводящих частей.

Лампа своими руками на основе светодиодной ленты по своим параметрам не отличается от покупного варианта. При этом его стоимость выходит значительно ниже, чем стоимость готового изделия.

Светодиодные светильники на различной основе

Свет светодиодов

Экономный вариант светодиодного светильника можно сделать своими руками на базе сгоревшей лампы. Для этого ее необходимо аккуратно разобрать перегоревшую лампу, не повредив цоколь и провести его чистку и обезжиривание.
В цоколе размещаем защитный резистор на 100 Ом и два конденсатора по 220 нФ, рабочее напряжение которых составляет 400 В, конденсатор на 10 мкФ, отвечающий за отсутствие мерцания, выпрямитель (диодный мост) и светодиоды в соотношении 1 (красного свечения) к 3 (белого). Составные части схемы соединяем пайкой и изолируем монтажным клеем, заполняя все пространство цоколя между частями схемы и закрепляя их.

Кроме обычной лампы для создания светодиодного светильника своими руками используется галогенная лампа.

Галогенная лампа

Галогенная лампа

Для сборки светильника на галогенной лампе необходимы следующие составные части:

  • схема сборки, которую можно составить самостоятельно или взять из интернета;
  • светодиоды;
  • неработающая галогенная лампа;
  • быстросохнущий клей;
  • медный провод;
  • паяльник и припой;
  • алюминиевая подложка толщиной 0,2 мм, которая будет заменять радиатор;
  • резисторы;
  • дырокол.

Сборка

Процесс сборки происходит в следующей последовательности:

  • Очищаем галогенную лампу от всех составных частей и замазок.
  • Вынимаем ее из отражателя.
  • Подготавливаем диск-отражатель, на котором будут располагаться светодиоды. Диск наклеиваем на алюминиевую подложку (шаблон диска можно взять в интернете) и делаем в нем дырочки.
  • Согласно схеме, располагаем светодиоды на диске ножками вверх, учитывая их полярность. Между ними прокатываем немного клея, избегая попадания на контакты.
  • Паяем контакты светодиодов так, чтобы цепочка начиналась положительной полярностью («+») и заканчивается отрицательной («-»).
  • Положительные контакты соединяем между собой пайкой.
  • К отрицательным контактам при помощи пайки присоединяем резисторы и соединяем их контакты между собой припоем, получая отрицательно заряженные резисторы.
  • Контакты резисторов также соединяем между собой и припаиваем к ним медные провода. Во избежание короткого замыкания пространство между контактами и проводами заливаем клеем.
  • Склеиваем межу собой диск и отражатель галогенки.
  • После полимеризации клея можно подключать источник питания на 12 В.

Энергосберегающая лампа

После того, как энергосберегающая лампа отслужила свой срок и сгорела, мастера hand-made рекомендуют не выбрасывать ее, а использовать прибор для создания светодиодного осветительного прибора. Это возможно осуществить при наличии в лампе исправного электронного балласта (ЭБ) и целого корпуса с цоколем, которые станут основой нового изделия.
Чтобы завершить комплектацию, необходимо приобрести светодиоды типоразмера 5 мм и 4 сверхбыстрых диода типа UF4007.
Суть создания светодиодной лампы на основе энергосберегающей заключается в установке выпрямительного моста на выходе ЭБ, который позволит получить постоянное напряжение 100 В при токе 130 мА.
Для уменьшения частоты переменного напряжения на выходе ЭБ выпрямительный мост соберем из диодов UF4007, к выходу которого припаиваем конденсатор на 0,1 мкФ, работающий на напряжении 400 В. Диодный мост устанавливаем на место конденсатора С3 (см. типовую схему ЭБ лампы), соединяющего нити накаливания лампы, который потом замыкаем между собой.

Электрическая схема ЭБ лампы

Отдельно собираем последовательную цепь из 30 светодиодных приборов, ток потребления которых составляет 20 мА, и проверяем ее работу.
При постоянном напряжении 100 В и токе 130 мА можно собрать 5 цепочек LED-диодов по 30 штук и получить лампу, мощность которой составит 15 Вт.

Как видим из описанного выше, светодиодный светильник можно сделать своими руками, не только спаяв схему, но и используя различные приборы – светодиодную ленту и лампы разных типов.


Секреты выбора галогенных люстр с пультом управления

Благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов , все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.


Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя . К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

О филаментных лампах

По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.


Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

Примеры ремонта светодиодных ламп

Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Ремонт светодиодной лампы
ASD LED-A60, 11 Вт на микросхеме SM2082

В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.


Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.


После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.


Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.


С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.


Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности небыло, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.


После сборки светодиодная лампа стабильно излучала свет, не смотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

Электрическая схема драйвера
светодиодной лампы ASD LED-A60 на микросхеме SM2082

Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.


Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

Ремонт светодиодной лампы
ASD LED-A60, 11 Вт, 220 В, E27

В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

При включении лампа на мгновенье зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.


Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.


Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.


В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.


Напряжение 220 В с цоколя лампы через резистор - предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.


На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.


На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.


Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.


В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

В наличии небыло светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстро сохнущим супер клеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность - 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

Ремонт светодиодной лампы
LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.


Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

Светорассеивающее стекло снялось легко, приклеено небыло. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.


Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в оной из выше описанных ламп.

Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.


Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

Поиск неисправных светодиодов

После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером , включенным в режим измерения сопротивления.

Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

Другие неисправности светодиодных ламп

Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодных мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

Пайка SMD светодиодов

Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку , сделанную из медной проволоки, то задача легко решается.

Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

Ремонт светодиодной лампы серии "LL-CORN" (лампа-кукуруза)
E27 4,6 Вт 36x5050SMD

Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от выше описанной лампы, поэтому и технология ремонта другая.


Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

Проверка светодиодов LED лампы-кукурузы не отличается от выше описанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.


Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.


Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 - 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

Ремонт светодиодной лампы "LL-CORN" (лампа-кукуруза)
E27 12 Вт 80x5050SMD

При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.


Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.


Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.


После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.


В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросав и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-5

Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.


В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.


Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.


После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.


Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу с лева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-3

Эта светодиодная лампа по внешнему виду очень похожа на "LLB" LR-EW5N-5, но конструкция ее несколько отличается.

Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

На алюминиевой печатной плате установлено три девяти кристальных сверх ярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы "LLB" LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.


Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.


Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.


Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти. Зато изучил ее устройство.

Ремонт светодиодной лампы серии "LL" GU10-3W

Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.


После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.


Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.


Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становиться жидким.

После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

Светодиодная лампа начала мигать как стробоскоп

Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.


После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

Онлайн калькуляторы для определения номинала резисторов
по цветовой маркировке

При ремонте светодиодных ламп возникает необходимость в определении номинала резистора . По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса цветных колец. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5.

Если Вам интересно, как сделать светодиодную лампу своими руками в домашних условиях, далее мы предоставим несколько пошаговых инструкций с фото и видео примерами, которые позволят собрать LED лампочку не более чем за час. Все предоставленные ниже идеи будут перечислены от наиболее простой к более сложной, что позволит Вам выбрать подходящий вариант в зависимости от навыков обращения с паяльником и электрическими схемами.

Идея №1 – Модернизируем галогенную лампочку

Проще всего самому сделать светодиодную лампу из перегоревшей галогенной лампочки с – GU4. В этом случае Вам понадобятся следующие материалы и инструменты:

  • Светодиоды. Их количество выберите сами в зависимости от того, насколько ярким должно быть светодиодное освещение. Сразу же обращаем Ваше внимание на то, что больше 22 диодов выбирать не стоит (это усложнит процесс сборки и к тому же сделает лампочку чересчур яркой).
  • Супер-клей (подойдет и обычный, но он будет дольше застывать, что не позволит сделать LED лампу быстро).
  • Небольшой кусок медного провода.
  • Резисторы. Их количество и мощность рассчитает онлайн-калькулятор.
  • Небольшой кусок листового алюминия (альтернативный вариант – обычная банка из под пива либо газированного напитка).
  • Доступ к интернету. Вам нужно будет открыть специальный онлайн калькулятор для расчета схемы светодиодной лампы.
  • Молоток, паяльник и дырокол.

Подготовив все материалы можно переходить непосредственно к сборке диодной лампочки. Инструкцию по созданию самодельного мы предоставим пошагово, с фото примерами каждого этапа, чтобы Вы наглядно увидели процесс монтажа.

Итак, чтобы сделать светодиодную лампу на 12 вольт, Вам необходимо выполнить следующие действия:

  1. Удалите из старой галогенной лампочки верхнее стекло, а также белую замазку возле штырькового цоколя (как показано на фото ниже). Для этого лучше всего использовать отвертку.
  2. Переверните лампу цоколем вверх и аккуратно с помощью молотка выбейте штырьки из посадочного места. Старая галогенная лампочка должна выпасть.
  3. Согласно выбранного Вами количества светодиодов придумайте схему их расположения, на основании чего сделайте бумажный трафарет. Можете воспользоваться уже существующей заготовкой и распечатать одну из готовых схем, которые предоставлены на картинке:
  4. Приклейте трафарет к листу алюминия с помощью супер-клея, вырежьте лист по форме трафарета, после чего дыроколом сделайте посадочные места под светодиоды.
  5. Сгенерируйте в интернете чертеж сборки светодиодной лампы для Ваших условий. В нашем случае для создания LED лампочки в домашних условиях из 22 диодов нужно собрать следующую схему:
  6. Положите алюминиевый диск на удобную подставку и вставьте в посадочные места светодиоды, как показано на фото. Чтобы упростить процесс пайки, подгибайте ножку катода одного диода к ножке анода другого.
  7. Аккуратно проклейте все светодиоды, сделав их единой конструкцией. Важный момент – клей не должен попасть на ножки диодов, т.к. при пайке будет выделятся крайне неприятный дым.
  8. Когда клей застынет, приступите к пайке ножек. Кстати, для этого рекомендуем Вам , что также не займет много времени. Согласно схеме спаяйте диоды LED лампы, оставив только одну плюсовую ножку и одну минусовую для подключения питания. Ножку «-» рекомендуется вполовину обрезать, чтобы в последующем не перепутать полярность контактов самодельной светодиодной лампочки.

  9. Согласно схеме припаяйте резисторы к минусовым контактам. В результате согласно нашему примеру должно получиться 6 плюсовых выводов и 6 минусовых (с резисторами).
  10. Спаяйте резисторы согласно сгенерированной схеме.
  11. К образовавшимся двум контактам припаяйте по одинаковому кусочку медного провода, что в результате позволит сделать штырьковой цоколь светодиодной лампы в домашних условиях. По аналогии с предыдущим советом одну ножку на время сделайте покороче (минусовую), чтобы потом ничего не перепутать и правильно выполнить подключение.

  12. Чтобы в будущем не произошло , тщательно проклейте пространство между выведенными ножками.
  13. Выполните финишную сборку LED лампочки: диск поместите на отражатель и тщательно проклейте его.
  14. Маркером подпишите на корпусе собранной светодиодной лампы где «+» и где «-», также обозначьте, что самодельный источник света рассчитан на подключение к питанию 12 Вольт, а не 220.

  15. Выполните проверку собранной самоделки. Для этого подключите светодиодную лампочку к автомобильному аккумулятору либо блоку питания 220/12 Вольт.

Вот таким вот простым способом можно сделать светодиодную лампу своими руками из подручных средств. Как Вы видите, ничего сложно нет и особо много времени на сборку потратить не потребуется! Рекомендуем обязательно просмотреть несколько лучших идей по созданию лампочки в домашних условиях, которые мы предоставили в видео галерее:

Идея №2 – «Экономка» в ход!

Вторая, не менее интересная идея – собрать лампочку из энергосберегающей лампы. Тут также нет особо серьезных работ и со сборкой справиться даже не очень опытный электрик.
Для начала Вы должны подготовить следующие материалы и инструменты для сборки светодиодной лампы своими руками:


Подготовив все материалы можно переходить к сборке. Данная инструкция более креативная, поэтому если Вы решили сделать диодную лампочку из сгоревшей экономки, внимательно смотрите фото примеры.

Этапы работ:


По данной инструкции можно запросто сделать светодиодную лампу из люминесцентной либо галогенной лампочки!

Идея №3 – LED лента за основу

Если же Вы не так хорошо владеете паяльником и в то же время понятие не имеете, как собирать схему на стеклотекстолите, лучше сделать светодиодную лампу своими руками из LED ленты. В этом случае вместо драйвера можно использовать блок питания, который преобразует 220 Вольт в сети в 12. Единственный весомый недостаток данного способа – большие габариты блока питания, поэтому такой вариант рекомендуется использовать в том случае, если Вы решили сделать в комнате светодиодное освещение точечными светильниками. Можно попробовать собрать все лампочки для них своими руками и подключить к единому блоку питанию, который спрячется без проблем в потолке.

Итак, все, что нужно сделать, это:


Вот и вся инструкция по сборке светодиодной лампы из ленты. Как Вы видите, все гораздо проще, чем даже сделать лампочку по сгенерированной схеме. На этом наши простые инструкции заканчиваются, и теперь Вы знаете, как сделать светодиодную лампу своими руками из энергосберегающей лампочки, диодной ленты и галогенного источника света! Надеемся, что предоставленные идеи были для Вас полезными и понятными!

Похожие материалы: