Выбор светодиодных ламп. Спектры источников света

Полосе с максимумом в области жёлтого (наиболее распространённая конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды жёлтого и зелёного цвета свечения. Световой выход этих, в то время ещё малоэффективных, устройств к 1990 году достиг уровня в один люмен . В 1993 году Сюдзи Накамура , инженер компании Nichia (Япония), создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB-устройства, поскольку синий, красный и зелёный цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем технология быстро развивалась, и к 2005 году световая отдача светодиодов достигла значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и ставшими уже традиционными люминесцентными лампами. Началось использование светодиодных осветительных устройств в быту, во внутреннем и уличном освещении .

RGB-светодиоды

Белый свет может быть создан путём смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические и более многоцветные варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники , лампы , кластеры), имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель . Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности , такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики . Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток , поскольку световая отдача каждого чипа неизвестна заранее и подвержена изменениям в процессе работы. Для установки нужных оттенков RGB-светильники иногда оснащают специальными регулирующими устройствами .

Спектр RGB-светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB-светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путём изменения тока каждого светодиода, входящего в «триаду », регулировать цветовой тон излучаемого ими белого света прямо в процессе работы - вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость световой отдачи и цвета от температуры за счёт различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы . Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки , в электронных табло и в видеоэкранах .

Люминофорные светодиоды

Комбинирование синего (чаще), фиолетового или ультрафиолетового (не используются в массовой продукции) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространённая конструкция такого светодиода содержит синий полупроводниковый чип нитрида галлия , модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета - иттрий -алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-сине-зелёного цвета.

В зависимости от состава люминофора выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путём комбинирования различных типов люминофоров достигается значительное увеличение индекса цветопередачи (CRI или R a) . На 2017 год уже существуют светодиодные панели для фото- и киносъёмки, где цветопередача критична, но такое оборудование дорого, а производители - единичны.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости - увеличение тока через полупроводниковый чип без увеличения его размеров - увеличение плотности тока . Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока электрические поля в объёме активной области снижают световой выход . При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному , происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе .

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов - это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светоотдачи до 70 % от первоначального значения (L70) . То есть, светодиод, яркость которого в процессе эксплуатации снизилась на 30 %, считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке, используется в качестве оценки срока жизни уровень снижения яркости 50 % (L50).

Срок службы люминофорного светодиода зависит от многих параметров . Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии отдаёт в виде излучения , часть в виде тепла . При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью , кроме того, материалы и конструкция корпуса обладают определённой неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии , изменению оптических свойств подложки. Всё это приводит к увеличению процента безызлучательной рекомбинации и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также проводятся исследования с другими полупроводниковыми материалами или подложками .

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются , и коэффициент преобразования, а также спектральные характеристики люминофора ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора и конструкции светодиодных ламп, в которых люминофор физически отделён от излучателя, позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве - вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Современный люминофорный светодиод - это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию :

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его световая отдача , то есть световой выход с каждого ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 190 лм/Вт . Теоретический предел технологии оценивается более чем в 300 лм/Вт . При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счёт КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре, тогда как температура чипа в процессе работы значительно повышается [ ] . Это приводит к тому, что реальная эффективность излучателя ниже на 5-7 %, а светильника - зачастую вдвое.

Второй не менее важный параметр - качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области , покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика. Этому есть три причины [ ] : первая связана с тем, что разница между энергией падающего и излученного квантов при флюоресценции теряется (переходит в тепло), и в случае ультрафиолетового возбуждения она значительно больше. Вторая причина - в том, что часть УФ излучения, не поглощенная люминофором, не участвует в создании светового потока, в отличие от светодиодов на основе синего излучателя, а увеличение толщины люминофорного покрытия приводит к повышению поглощения в нём света люминесценции. И наконец, КПД ультрафиолетовых светодиодов значительно ниже КПД синих.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств :

Но есть и недостатки:

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например, направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения, находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

См. также

Примечания

  1. , p. 19-20.
  2. Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели Архивировано 22 ноября 2012 года.
  3. Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  4. Многоцветные светодиоды XB-D и XM-L компании Cree (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  5. Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии: журнал. - 2009. - № 6 . - С. 88-91 .
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии: журнал. - 2007. - № 2 .
  8. , p. 404.
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии: журнал. - 2005. - № 9 .
  10. Светодиоды для интерьерной и архитектурной подсветки (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  11. Сян Лин Ун (Siang Ling Oon). Светодиодные решения для систем архитектурной подсветки // Полупроводниковая светотехника: журнал. - 2010. - № 5 . - С. 18-20 .
  12. Светодиоды RGB для использования в электронных табло (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  13. High CRI LED Lighting | Yuji LED (неопр.) . yujiintl.com. Дата обращения 3 декабря 2016.
  14. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии: журнал. - 2011. - № 5 .
  15. Светодиоды с высокими значениями CRI (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  16. Технология EasyWhite компании Cree (англ.) . LEDs Magazine. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  17. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии: журнал. - 2008. - № 1 .
  18. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии: журнал. - 2006. - № 3 .
  19. Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  20. Срок службы белых светодиодов Архивировано 22 ноября 2012 года.
  21. Виды дефектов LED и методы анализа (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  22. , p. 61, 77-79.
  23. Светодиоды компании SemiLEDs (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  24. GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.) . LED Professional. Дата обращения 10 ноября 2012.
  25. Технология изолированного люминофора компании Cree (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  26. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника: журнал. - 2011. - № 5 . - С. 28-33 .
  27. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект: XII Всероссийское совещание: материалы докладов. - Томск: СПБ Графикс, 2011. - С. 74-77 .
  28. , p. 424.
  29. Отражатели для светодиодов на основе фотонных кристаллов (англ.) . Led Professional. Дата обращения 16 февраля 2013. Архивировано 13 марта 2013 года.
  30. XLamp XP-G3
  31. Белые светодиоды с высоким световым выходом для нужд освещения (англ.) . Phys.Org™. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  32. Cree First to Break 300 Lumens-Per-Watt Barrier (англ.) . www.cree.com. Дата обращения 31 мая 2017.
  33. Основы светодиодного освещения (англ.) . U.S. Department of Energy. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  34. Шаракшанэ А. Шкалы оценки качества спектрального состава света - CRI и CQS // Полупроводниковая светотехника: журнал. - 2011. - № 4 .
  35. Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм. (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  36. , p. 4-5.

Излучающие свет полупроводниковые приборы широко используются для работы систем освещения и в качестве индикаторов электрического тока. Они относятся к электронным устройствам, работающим под действием приложенного напряжения.

Поскольку его величина незначительная, то подобные источники относятся к низковольтным приборам, обладают повышенной степенью безопасности по воздействию электрического тока на организм человека. Риски получения травм возрастают тогда, когда для их свечения используются источники повышенного напряжения, например, бытовой домашней сети, требующие включения в схему специальных блоков питания.

Отличительной чертой конструкции светодиода является более высокая механическая прочность корпуса, чем у ламп «Ильича» и люминесцентных. При правильной эксплуатации они работают долго и надежно. Их ресурс в 100 раз превышает показатели нитей накаливания, достигает ста тысяч часов.

Однако, этот показатель характерен для индикаторных конструкций. У мощных источников для освещения применяются повышенные токи, а срок эксплуатации снижается в 2÷5 раз.

Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: . Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.

Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:

Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.

Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.

На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.

Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.

Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.

Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.

Принципы излучения света

Полупроводниковый переход p-n типа подключают к источнику постоянного напряжения в соответствии с полярностью выводов.

Внутри контактного слоя веществ p- и n-типов под его действием начинается движение свободных отрицательно заряженных электронов и дырок, которые обладают положительным знаком заряда. Эти частицы направляются к притягивающим их полюсам.

В переходном слое заряды рекомбинируют. Электроны проходят из зоны проводимости в валентную, преодолевая уровень Ферми.

За счет этого часть их энергии освобождается с выделением световых волн различного спектра и яркости. Частота волны и цветопередача зависят от вида смешанных материалов, из которых сделан .

Для излучения света внутри активной зоны полупроводника требуется соблюсти два условия:

1. пространство запрещенной зоны по ширине в активной области должно быть близко к энергии излучаемых квантов внутри видимого человеческому глазу диапазона частот;

2. чистоту материалов полупроводникового кристалла необходимо обеспечивать высокую, а количество дефектов, влияющих на процесс рекомбинации — минимально возможным.

Эта сложная техническая задача решается несколькими путями. Один из них — создание нескольких слоев p-n переходов, когда образуется сложная гетероструктура.

Влияние температуры

При увеличении уровня напряжения источника сила тока через полупроводниковый слой возрастает и свечение увеличивается: в зону рекомбинации поступает повышенное количество зарядов за единицу времени. Одновременно происходит нагрев токоведущих элементов. Его величина критична для материала внутренних тоководов и вещества p-n перехода. Излишняя температура способна их повредить, разрушить.

Внутри светодиодов энергия электрического тока переходит в световую непосредственно, без излишних процессов: не так, как у ламп с нитями накаливания. При этом образуются минимальные потери полезной мощности, обусловленные низким нагреванием токопроводящих элементов.

За счет этого создается высокая экономичность этих источников. Но, их можно применять только там, где сама конструкция защищена, блокирована от внешнего нагрева.

Особенности световых эффектов

При рекомбинации дырок и электронов в разных составах веществ p-n перехода создается неодинаковое излучение света. Его принято характеризовать параметром квантового выхода — количеством выделенных световых квантов для единичной рекомбинированной пары зарядов.

Он формируется и происходит на двух уровнях светодиода:

1. внутри самого полупроводникового перехода — внутренний;

2. в конструкции всего светодиода в целом — внешний.

На первом уровне квантовый выход у правильно выполненных монокристаллов может достигать величины, близкой к 100%. Но, для обеспечения этого показателя требуется создавать большие токи и мощный отвод тепла.

Внутри самого источника на втором уровне часть света рассеивается и поглощается элементами конструкции, чем снижает общую эффективность излучения. Максимальное значение квантового выхода здесь намного меньше. У светодиодов, испускающих красный спектр, оно достигает не более 55%, а у синих снижается еще больше — до 35%.

Виды цветовой передачи света

Современные светодиоды излучают:

  • белый свет.

Желто-зеленый, желтый и красный спектр

В основе p-n перехода используются фосфиды и арсениды галлия. Эта технология была реализована в конце 60-х годов для индикаторов электронных приборов и панелей управления транспортной техники, рекламных щитов.

Такие устройства по светоотдаче сразу обогнали основные источники света того времени — лампы накаливания и превзошли их по надежности, ресурсу и безопасности.

Голубой спектр

Излучатели синего, сине-зеленого и особенно белого спектров долго не поддавались практической реализации из-за трудностей комплексного решения двух технических задач:

1. ограниченных размеров запрещенной зоны, в которой осуществляется рекомбинация;

2. высоких требований к содержанию примесей.

Для каждой ступени повышения яркости синего спектра требовалось увеличение энергии квантов за счет расширения ширины запретной зоны.

Вопрос удалось разрешить включением в вещество полупроводника карбидов кремния SiC или нитридов. Но, у разработок первой группы оказался слишком низкий КПД и маленький выход излучения квантов для одной рекомбинированной пары зарядов.

Повысить квантовый выход помогло включение в полупроводниковый переход твердых растворов на основе селенида цинка. Но, такие светодиоды обладали повышенным электрическим сопротивлением на переходе. За счет этого они перегревались и быстро перегорали, а сложные в изготовлении конструкции отвода тепла для них эффективно не работали.

Впервые светодиод голубого свечения удалось создать при использовании тонких пленок из нитрида галлия, наносимых на сапфировую подложку.

Белый спектр

Для его получения используют одну из трех разработанных технологий:

1. смешивание цветов по методике RGB;

2. нанесение трех слоев из красного, зеленого и голубого люминофора на светодиод ультрафиолетового диапазона;

3. покрытие голубого светодиода слоями желто-зеленого и зелено-красного люминофора.

При первом способе на единой матрице размещают сразу три монокристалла, каждый из которых излучает свой спектр RGB. За счет конструкции оптической системы на основе линзы эти цвета смешивают и получают на выходе суммарный белый оттенок.

У альтернативного метода смешение цветов происходит за счет последовательного облучения ультрафиолетовым излучением трех составляющих слоев люминофора.

Особенности технологий белого спектра

Методика RGB

Она позволяет:

    задействовать в алгоритме управления освещением различные комбинации монокристаллов, подключая их поочередно вручную или автоматизированной программой;

    вызывать различные цветовые оттенки, меняющиеся по времени;

    создавать эффектные осветительные комплексы для рекламы.

Простым примером такой реализации служат . Подобные алгоритмы также широко используют дизайнеры.

Недостатками светодиодов RGB конструкции являются:

    неоднородный цвет светового пятна по центру и краям;

    неравномерный нагрев и отвод тепла с поверхности матрицы, ведущий к разным скоростям старения p-n переходов, влияющий на балансировку цветов, изменению суммарного качества белого спектра.

Эти недостатки вызваны разным расположением монокристаллов на базовой поверхности. Они сложно устраняются и настраиваются. За счет подобной технологии RGB модели относятся к наиболее сложным и дорогим разработкам.

Светодиоды с люминофором

Они проще в конструкции, дешевле в производстве, экономичнее при пересчетах на излучение единицы светового потока.

Для них характерны недостатки:

    в слое люминофора происходят потери световой энергии, которые понижают светоотдачу;

    сложность технологии нанесения равномерного слоя люминофора влияет на качество цветовой температуры;

    люминофор обладает меньшим ресурсом, чем сам светодиод и быстрее стареет при эксплуатации.

Особенности светодиодов разных конструкций

Модели с люминофором и RGB-изделия создаются для разного промышленного и бытового применения.

Способы питания

Индикаторный светодиод первых массовых выпусков потреблял около 15 мА при питании от чуть меньшей величины, чем два вольта постоянного напряжения. Современные изделия имеют повышенные характеристики: до четырех вольт и 50 мА.

Светодиоды для освещения питаются таким же напряжением, но потребляют уже несколько сотен миллиампер. Производители сейчас активно разрабатывают и проектируют устройства до 1 А.

С целью повышения эффективности светоотдачи создаются светодиодные модули, которые могут использовать последовательную подачу напряжения на каждый элемент. В таком случае его величина возрастает до 12 либо 24 вольт.

При подаче напряжения на светодиод требуется учитывать полярность. Когда она нарушена, то ток не проходит и свечения не будет. Если же используется переменный синусоидальный сигнал, то свечение происходит только при прохождении положительной полуволны. Причем его сила так же пропорционально меняется по закону появления соответствующей величины тока с полярным направлением.

Следует учитывать, что при обратном напряжении возможен пробой полупроводникового перехода. Он происходит при превышении 5 вольт на одном монокристалле.

Способы управления

Для регулировки яркости излучаемого света применяют один из двух методов управления:

1. величиной подключаемого напряжения;

Первый способ простой, но неэффективный. При снижении уровня напряжения ниже определённого порога светодиод может просто потухнуть.

Метод же ШИМ исключает подобное явление, но он значительно сложнее в технической реализации. Ток, пропускаемый через полупроводниковый переход монокристалла, подается не постоянной формой, а импульсной высокой частоты со значением от нескольких сотен до тысячи герц.

За счет изменения ширины импульсов и пауз между ними (процесс называют модуляцией) осуществляется регулировка яркости свечения в широких пределах. Формированием этих токов через монокристаллы занимаются специальные программируемые управляющие блоки со сложными алгоритмами.

Спектр излучения

Частота выходящего из светодиода излучения лежит в очень узкой области. Ее называют монохроматической. Она кардинальным образом отличается от спектра волн, исходящего от Солнца или нитей накаливания обычных осветительных ламп.

О влиянии такого освещения на человеческий глаз ведется много дискуссий. Однако, результаты серьезных научных анализов этого вопроса нам неизвестны.

Производство

При изготовлении светодиодов используется только автоматическая линия, в которой работают станки-роботы по заранее спроектированной технологии.

Физический ручной труд человека полностью исключен из производственного процесса.

Подготовленные специалисты осуществляют только контроль за правильным протеканием технологии.

Анализ качества выпускаемой продукции тоже входит в их обязанности.

В идеале для оценки качества спектра излучения лампы необходим спектрофотометр. В крайнем случае можно использовать спектрофотометры для профилирования/калибровки мониторов (например, ColorMunki) - если такое устройство у вас есть. Покупать же спектрофотометры домой для оценки ламп нет никакого смысла, они стоят от сотен до десятков тысяч долларов.

Тем не менее, для нужд геологов и ювелиров выпускают простейшие спектроскопы на основе диффракционной решетки. Их стоимость от 1200 до 2500 руб. И это забавная и полезная штука.

Выглядит спектроскоп так:

В окуляр (слева, где конус) нужно смотреть, при этом объектив (справа) должен быть направлен на источник излучения.

Диффракционная решетка разлагает свет на спектр (как радуга или оптическая призма).

Прежде чем вникать в спектры реальных ламп, напомню общую информацию. (Достаточно подробно это рассмотрено в книге в главе «Качество света»).

Здесь я покажу два спектра СДЛ с исключительно высоким индексом цветопередачи 97 (источник ):

Холодный свет:


Можно видеть, что цветовая температура 5401 К, индекс 97. Главное же - можно видеть из каких видимых глазами цветов состоит спектр.

Теплый свет:


Температура 3046 К, индекс также 97.

Спектрофотометр - в отличие от спектроскопа - показывает не просто, какие цвета образуют спектр, но и дает их интенсивность. Хорошо видно, что в спектрах обеих ламп есть все цвета, составляющие белый («каждый охотник желает знать где сидит фазан», т.е. красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый). Различие в цветовой температуре достигается за счет относительного вклада холодных (синий-голубой) и теплых (желтый-красный) компонентов.

Вынужден упомянуть о том, что данный спектроскоп предназначен для мобильного использования с помощью глаз. Фиксировать картинку крайне неудобно, поскольку окуляр маленький и устройств для фиксации на камере нет. Поэтому одной рукой нужно удерживать камеру, другой спектроскоп, а голосом управлять съемкой. При этом еще нужно удерживать направление на источник света, небольшие отклонения от нормали приводят к искажению цветов спектра. Из почти десятка разноообразных камер, что есть у меня дома, лучшим оказался планшет «Самсунг». Камера там всего 5 мп, но хороший софт, а размер и положение объектива на корпусе устройства позволяют более-менее удобно пристроить спектроскоп. Баланс белого был зафиксирован как «дневной», ИСО 400. Снимки не обрабатывались, лишь выравнивались и обрезались. Цифры справа обозначают индекс цветопередачи источника (100 - дневной свет в облачную погоду, 99 - лампа накаливания). Качество фотографий меня не очень устраивает - но лучше я сделать не смог.


Итак, начнем сверху вниз и на конкретных примерах попытаемся понять, на что нужно обращать внимание в таких спектрах.

Дневной свет и лампа накаливания: идеальный спектр, в котором представлены все вышеперечисленные цвета.

СДЛ с индексами цветопередачи 87 (обзор ) и 84 (обсуждалась по выбору производителя) также демонстрируют практически полный спектр. Проблемой обычно становится красная часть - если желтого и оранжевого, как правило, достаточно, то глубокие красные оттенки чаще всего отсутствуют. Не видно их и здесь. Также можно предположить (например, по количеству голубого в спектрах), что производители используют разные светодиоды 5736SMD. Т.е. мы имеем дело не с одной и той же лампой, приобретенной у разных продавцов - а с различными производителями.

СДЛ с индексом 78 (ее разбор приведен в главе «Пример оценочного тестирования» в книге) наряду с урезанной красной частью демонстрирует и малое количество голубого. (Может показаться, что в сравнении со спектром лампы с индексом 84 это не так. Но тут нужно вспомнить, что 84 - это теплая лампа, Т=2900. А 78 - холодная, Т=5750 К, там синего по определению намного больше). Именно в этом главные недостатки простых бюджетных СДЛ, которые формируют якобы белый свет за счет синего или пурпурного излучения светодиода и желто-оранжевого света люминофора. Справа от синего лежит голубой - но из описанной комбинации он «не получается». Поэтому в спектре СДЛ там обычно провал. За счет этого (плюс дефицит глубокого красного) и падает индекс цветопередачи.

Самый нижний спектр - это высококачественная компактная люминесцентная лампа (КЛЛ, Т=2700 К, ресурс 12000 часов, заявленный индекс цветопередачи не менее 80). И вот здесь хорошо видно, за счет чего достигается эта формально достаточно высокая величина. Сам производитель называет это «система Tricolor». Т.е. он использует люминофор из 3 компонентов, каждый из которых излучает свет в виде узкой полосы. (Конечно, и такую лампу сделать совсем непросто, т.к. требуется тщательный подбор комбинации люминофоров.) Именно наличие таких вертикальных полос (например, фиолетовая, зеленая, желтая) - признак низкокачественных источников света. Вторым следствием линейчатого спектра источника является физическое отсутствие некоторых цветов в принципе (на рисунке, например, практически нет желтого и очень мало голубого). Очевидно, что свет таких ламп для глаз малополезен несмотря на формально достаточно высокие показатели. Использовать такие лампы нужно в светильниках с качественными рассеивателями (хотя, конечно, спектра лампы это не изменит).

Вывод: в спектрах источников света с высоким индексом цветопередачи должны присутствовать все цвета спектра и отсутствовать интенсивные узкие полосы.

Отдельно хочу предостеречь от поспешности в анализе спектров. По роду деятельности я много общался со спектроскопистами и заметил железную закономерность: чем более квалифицированный и профессиональный специалист - тем более он осторожен и уклончив в своих выводах. От лучшего из них, профессора, заведующего лабораторией спектроскопии вообще в принципе было невозможно добиться внятного заключения (что меня вначале по молодости дико раздражало). Глаз, безусловно, лучший оптический прибор из существующих. Но анализ и интерпретация спектров - бесконечно сложная тема. Там действует огромное количество разных факторов. Поэтому настоятельно рекомендую только простейшую качественную оценку спектров глазами, без попыток хитрых умопостроений и далеко идущих выводов. Лучше всего попеременно смотреть на спектр оцениваемой лампы и на идеальный спектр дневного света или ЛН. Т.е. наглядное сравнение между собой.


Но вырастить цветы в условиях нашей зимы не просто. Расскажу о том, что помогает в выращивании растений - специальном свете, фитолампах.

С праздников весны, милые дамы! Какой же весенний праздник без цветов?

Про самодельные лампы для растений я написал уже несколько статей



Сейчас расскажу о специальных светодиодах для растений с «полным спектром»
Процесс сильно зависит от спектра света.


Поэтому эффективнее использовать свет, максимально приближенный к 445нм и 660нм. Также рекомендуют добавлять еще и инфракрасный светодиод. Про все это сломано не мало копий на соответственных форумах. Не буду теоретизировать, перейду к практике. На этот раз на просторах АЛИ я приобрел 3-х ваттные светодиоды для растений с «полным спектром».

Характеристики товара

  • Мощность: 3 Вт (есть 1 Вт в том же лоте)
  • Рабочий ток: 700мА
  • Рабочее напряжение: 3.2-3.4В
  • Производитель чипа: Epistar Chip
  • Размер чипа: 45mil
  • Спектр: 400нм-840нм
  • Сертификаты: CE, RoHS,
  • Срок жизни: 100 000 ч
  • Назначение: лампы для растений
Цена на светодиоды довольно привлекательная.
Упаковка очень простая.




По виду светодиод похож на своих холодных и тепло белых братьев.




Упаковка осталась от ранее использованных светодиодов.

Тестирование светодиодов

Для начала, проверка мощности и снятие вольт-амперной характеристики
Компьютерный блок питания, используемый мной как лабораторный и старый добрый ПЭВР-25, олицетворяющий великую эпоху)))


Измерение тока/напряжения простейшим приборчиком, так как особой точности здесь не требуется. Ну и радиатор, чтобы не перегреть светодиод, пока буду над ним издеваться. Дополнительно измерил освещенность в каждом режиме на расстоянии примерно 15-20 см для оценки эффективности свечения при разных токах.


Мощность светодиода довел до 7.5Вт, думал помрет, а нет, выжил!


Посмотрим что дает график напряжения и освещенности от тока.


Напряжение меняется довольно линейно. Никаких признаков деградации кристалла на токе 1.5А. С освещенностью все интереснее. Примерно после 500мА зависимость освещенности от тока снижается. Делаю вывод, что 500-600мА - самый эффективный режим работы с этим светодиодом, хотя он вполне будет работать на своих паспортных 700мА.

Спектральный анализ

Для спектрального анализа взял попользоваться спектроскоп






В одну трубку светим исследуемым источником, в другую, подсвечиваем шкалу. В окуляр смотрим готовый спектр


К сожалению, данный экземпляр спектроскопа не имеет специальной насадки для фотографирования. Картинка визуально очень красивая никак не хотела получаться в компьютере. Пробовал и разные фотоаппараты, и телефоны и планшет. В результате остановился на , с помощью которого кое как удалось снять картинки спектра. Цифры шкалы дорисовывал в редакторе, так как камера никак не хотела нормально фокусироваться.


Вот что у меня в результате получилось
Солнечный спектр

Люминисцентная настольная лампа
Четко видны спектральные линии ртути

В качестве радиатора использую П-образный 30мм алюминиевый профиль. На 1м профиля 10 светодиодов (порядка 20Вт). При постоянной работе такая лампа нагревается не более 45С.

Корпуса для драйверов я делаю из электротехнического кабель канала.

Для приклеивания светодиодов к профилю использую казанский герметик, хотя подошел бы и термоклей.



Потом соединяю все проводками, контакты изолирую термоусадкой

Теперь драйвер и фитолампа готова

Пару часов прогона показывает, что тепловой расчет сделан правильно и перегрева не будет даже при длительной работе

Свет у лампы мягче, чем у раздельных светодиодов 440нм и 660нм. Она меньше слепит глаза.

Пора подвести итоги

Светодиоды с «полным спектром» вполне оправдывают свое назначение и годятся для изготовления фитоламп.

Заявленная мощность и спектр соответствуют заявленным характеристикам, хотя инфракрасную состовляющую проверить не удалось.

Нужный спектр в таких светодиодах достигается специальным люминофором, поэтому конструктив самих диодов может быть любым. Можно брать мощные матрицы на 20Вт и выше для использования в теплицах. Для подсветки рассады и комнатных растений вполне достаточно этих светодиодов.

Выходной контроль пройден!




Белый светодиод

В отличие от традиционных ламп накаливания и люминесцентных ламп, дающих белый свет, светодиоды генерируют свет очень в узком диапазоне спектра, т.е. дают почти монохромное свечение. Именно поэтому светодиоды давно используют в контрольных панелях и гирляндах, а сегодня особенно их эффективно используют в световых установках, излучающих какой-либо определенный основной цвет, к примеру, в светофорах, указателях, сигнальных огнях.

Принцип устройства белого светодиода

Принцип устройства белого светодиода не очень сложен, сложна технологи реализации. Чтобы светодиод излучал белый свет приходится прибегать к дополнительным техническим элементам и техническим решениям. Основными способами для получения белого свечения в светодиодах являются:

    нанесение слоя люминофора, на синие кристаллы;

    нанесение нескольких слоев люминофора на кристаллы, излучающие свет, близкий по цвету к ультрафиолетовому;

    RGB-системы, в которых за счет смешения света множества монохромных красных, зеленых и синих диодов достигается свечение белого цвета.

В первом случае, чаще всего, используют кристаллы синих светодиодов, которые покрывают люминофором, желтым фосфором. Фосфор поглощает некоторое количество синего света и излучает желтый свет. При смешении оставшегося непоглащенного синего света с желтым получается свет близкий к белому.

Второй метод представляет собой не так давно разработанную технология получения твердотельных источников белого света на основе комбинации диода, излучающего свечение, близкое по цвету к ультрафиолетовому, и нескольких слоев люминофора из фосфора различного состава.

В последнем случае белый свет получают классическим путем, смешивая три базовых цвета (красного, зеленого и синего). Качество белого света улучшают за счет дополнения конфигурации RGB желтыми светодиодами, что позволяет охватывать желтую часть спектра.

Достоинства и недостатки былых светодиодов

У каждого из этих способов есть свои положительные о отрицательные стороны. Так, для белых люминофорных светодиодов, изготавливаемых по принципу комбинации синих кристаллов с фосфорным люминофором характерны достаточно низкий индекс цветопередачи, склонность к генерации белого света холодных тонов, неоднородность оттенка свечения при достаточно высоком световом потоке и относительно небольшой стоимости.

Белые люминофорные светодиоды , полученные на основе комбинации диодов, с близким к ультрафиолетовому цвету свечения и разноцветных фосфоров, обладают отличным индексом цветопередачи, могут генерировать белый свет более теплых оттенков и отличаются большей однородностью оттенков свечения от диода к диоду. Однако при этом они потребляют больше электроэнергии и не столь ярки, как первые.

В свою очередь RGB-светодиоды позволяют создавать светодинамические эффекты в световых установках со сменой цвета свечения и различными тонами белого свечения и потенциально может обеспечивать очень высокий индекс цветопередачи. В то же время светодиоды отдельных цветов по-разному реагируют на величины рабочего тока, окружающую их температуру и регулирование яркости, и потому RGB-светодиоды нуждаются в достаточно сложных и дорогостоящих системах управления для достижения стабильной работы.

Чтобы светильники на основе белых светодиодов давали более качественный свет, т.е. более полный спектр, в конструкции светильников используют