Газовый гелий-неоновый лазер. Гелий-неоновый лазер Гелий неоновый лазер зависимость от процента смеси

Ознакомление с принципом работы гелий-неонового лазера и изучение характеристик лазерного излучения.

Основы физики работы лазера

Слово «Лазер» составлено из первых букв английского словосочетания «Light Amplification by Stimulated Emission of Radiation» - усиление света с помощью индуцированного излучения.

Гелий-неоновый лазер (конструкция и принцип работы)

В Не-Ne лазере используются принцип резонансной передачи энергии возбуждения от примесного газа (Не) основному (Ne). Диаграмма энергетических уровней гелия и неона приведена на рис. 7.5.

Для данной смеси газов условия резонансной передачи энергии выполняются для уровней

2 1 s (He) → 3s (Ne) , 2 3 s (He) → 2s (Ne)

В результате газового разряда уровни 2 1 s и 2 3 s заселяются за счет электронных ударов. При неупругих столкновениях возбужденных атомов гелия с атомами неона происходит возбуждение последних и заселение метастабильных уровней 2s и 3s:

He * + Ne → He + Ne * (2s) + Ne * (3s)

Хотя уровни 2р и 3р неона также заселяются за счет электронных ударов, что уменьшает разность населенности уровней 2s, 3s и 2р, 3р, но эффективность этого процесса мала по сравнению с процессом (7.11). Это достигается тем, что парциальное давление неона (~10 Па) много меньше парциального давления гелия (~100 Па), в связи с чем концентрация гелия значительно превышает концентрацию неона.

За счет дефекта энергий уровней (2 1 s → 2s), значительно превышающего величину kT, результат процесса (7.11) далек от желаемого. Однако это компенсируется большим временем жизни возбужденных атомов Ne на уровнях 2s и 3s, состоящих из четырех подуровней, по сравнению с уровнями 2р и 3р. Например, время жизни неона на уровне 2s 2 составляет 9,6*10 -8 с, а время жизни на уровне 2р 4 - 1,2-10 -8 с.

При осуществлении инверсной заселенности уровней 2s и 3s происходят излучательные переходы на уровни 2р и 3р со следующими длинами волн:

2s 2 → 3p 4 λ 2 = 3,39 мкм
3s 2 →2p 4 λ 3 = 0,6328 мкм

«Отработанные» атомы переходят за счет спонтанного излучения с уровней 3р и 2р на метастабильный уровень 1s. Сток частиц с уровня 1s обеспечивается, в основном, за счет диффузии к стенкам.
Схема конструкции газового лазера приведена на рис. 7.6.


В газоразрядной трубке, заполненной смесью неона и гелия в пропорции 1:10, зажигается газовой разряд, с помощью которого происходит инверсия населенности уровней.

Поскольку в процессе разряда появляются фотоны с произвольными частотами, существуют и фотоны с длинами волн λ 1 , λ 2 и λ 3 , совпадающими с длинами волн соответствующих переходов. Они вызывают индуцированный переход с образованием фотонов с этими же частотами, фазами и направлениями волновых векторов k" . В случае, если появляется волна частотой, например, ω 3 =с/λ 3 , она распространяется вдоль трубки и отражается от зеркала. Расстояние между зеркалами выбирается кратным половине длины волны, что обеспечивает возбуждение резонатора (колебательного контура в оптическом диапазона) именно на этой длине волны.

Отраженная от зеркал волна приходит в данную точку в той же фазе, что и первичная, обеспечивая положительную связь. Происходит накопление фотонов, то есть энергии монохроматической волны. Ввиду высокой добротности контура, достигающей десятков тысяч единиц, амплитуда колебаний становится достаточно большой. Наличие выходных окон газоразрядной трубки, расположенных под углом Брюстера, выделяет линейную поляризацию волн в определенной плоскости, в связи с чем волны с иной поляризацией не проходят через полупрозрачное зеркало 2, которое пропускает всего 4-5% интенсивности излучения, а остальные 96% идут на поддержание процесса генерации.

Увеличение потерь излучения на волне λ 2 (усиление на переходе 2s 2 → 3p 1 велико по сравнению с усилением на переходе 3s 2 → 2p 4) достигается как использованием окон, расположенных под углом Брюстера, так и соответствующей расстройкой резонатора. Однако наличие этого излучения снижает эффективность работы лазера в видимом оптическом диапазоне.

Описание лабораторной установки

Лабораторная установка (рис. 7.7) представляет собой газовый Не-Ne лазер 1, который установлен на оптической скамье 2. Блок питания 3 лазера расположен отдельно. На держателе 4 расположен горизонтальный столик 5, на который в ходе выполнения работы устанавливаются следующие детали: дифракционная решетка 6; экран 7; поляроид 8; вращение которого осуществляется рычагом 9; фотодиод 10. Микроамперметром 11 измеряется ток в цепи фотодиода. Стационарный экран 12 должен быть расположен на расстоянии не менее 1,5 м от лазера.

Методика проведения эксперимента

После прохождения через дифракционную решетку лазерного луча на экране возникает дифракционная картина пятен, соответствующих главным дифракционным максимумам нулевого, первого, второго и т.д. порядков (рис. 7.8).

Длина волны излучения определяется из условия главных дифракционных максимумов

  • d - постоянная дифракционной решетки,
  • φ - угол дифракции,
  • k - порядок дифракционного спектра,
  • λ - длина волны.

Угол дифракции вычисляется по формуле

φ = arctg h i / l

Здесь l - расстояние между экраном и дифракционной решеткой,
h i - расстояние между нулевым и i-ым максимумами (i = 1, 2,...).

По формуле (7.12) вычисляется длина волны излучения.

Малое угловое расхождение лазерного луча можно оценить, помещая экраны на разных расстояниях от лазера (рис. 7.9) и измеряя радиус пятна излучения.

Зная расстояние l между экранами и диаметры d световых пятен на экранах, можно определить угловое расхождение светового пучка по формуле


Исследование поляризации излучения лазера
Помещая в пучке излучения лазера поляроид и вращая его вокруг оси пучка, можно полностью погасить или полностью пропустить свет. Это говорит о том, что излучение лазера линейно поляризовано. Поместив за поляроидом фотоэлемент, можно измерить силу фототока i для каждой ориентации поляроида и построить график i = ƒ (φ)). Этот график дает зависимость интенсивности света I, прошедшего через поляроид, от угла поворота поляроида, т.к. I ~ i. Доказательством линейной поляризации излучения лазера служит соответствие полученного графика закону Малюса

I = I o * cos 2 α

Порядок выполнения лабораторной работы

Внимание! При работе с лазером помните, что попадание в глаза прямого лазерного излучения опасно для зрения.

Ознакомьтесь с информацией на лабораторном столе (п.1). Включение лазера производите в присутствии преподавателя или лаборанта.

Включите в сеть блок питания 3 (см. рис. 7.7). Тумблер «сеть» на блоке питания поставьте в положение «вкл». На экране 12 должно появиться яркое пятно. Через 7-10 минут лазер готов к работе.

Определение длины волны излучения лазера
  1. Установите столик 5 на расстояние (0,8-1,2) м от экрана 12 (см. рис. 7.4). Для этого отпустите зажимной винт стойки, плавно переместив столик вдоль скамьи, установите по указателю нужное положение и закрепите винтом.
  2. На столике 5 установите дифракционную решетку 6. Выведите световое пятно в центр дифракционной решетки (см. указание на лабораторном столе). На экране 12 возникает дифракционная картина с ярким нулевым максимумом.
  3. Измерьте расстояние между дифракционными максимумами первого h i и второго h 2 порядков (см. рис. 7.8).
  4. Переместите столик 5 на (0,2-0,3) м ближе к экрану 12.
  5. Измерьте h i и h 2 при новом положении дифракционной решетки.
  6. Запишите результаты измерений и постоянную решетку d = 0,01 мм в табл. 7.1.
  7. Снимите со столика дифракционную решетку.
Оценка направленности излучения лазера
  1. Установите столик на расстоянии l = (0,8-0,9) м от экрана 12 (см. рис. 7.7).
  2. На столике 5 установите поляроид 8, который в данном упражнении используется в качестве ослабителя яркости светового луча. Выведите световое пятно в центр поляроида. Вращая поляроид рычагом 9, получите оптимальную для Ваших глаз яркость пятна на экране.
  3. Приложите к экрану листок бумаги и зарисуйте сечение пятна.
  4. Установите на столик 5 экран 7 (между поляроидом и экраном 12).
  5. Зарисуйте сечение пятна на экране 7.
  6. Измерьте диаметры пятен по своим рисункам не менее трех раз по разным направлениям.
  7. Запишите результаты измерений диаметров пятен (d") и расстояние l в табл. 7.2.
  8. Снимите со столика экран 7.
Исследование поляризации изучения лазера
  1. Вращая поляроид рычагом 9, убедитесь, что яркость пятна на экране 12 зависит от угла поворота поляроида вокруг оси светового пучка. Получите максимальную яркость пятна. Это положение поляроида будет началом отсчета угла поворота (φ = 0).
  2. Установите на столик фотодиод 10 и подключите к нему микроамперметр 11.
  3. Поставьте тумблер микрометра в положение «вкл».
  4. Выведите световой пучок на фоточувствительный слой фотодиода (см. указание на лабораторном столе). В этом случае микроамперметр будет показывать максимальный ток в цепи фотодиода.
  5. Измеряйте ток через каждые 5 o поворота поляроида. Отсчет φ производите по шкале на диске крепления поляроида. Измерения запишите в табл. 7.3.
  6. Поставьте тумблер микроамперметра и тумблер «сеть» блока питания в положение «вкл». Выключите блок питания из сети.
  7. Снимите со столика поляроид и фотодиод.
Обработка результатов измерений

Перечень контрольных вопросов

  1. Что такое спонтанное и индуцированное (вынужденное) излучение?
  2. Что такое инверсная заселенность энергетических уровней и как она достигается?
  3. Почему для усиления происходящего через среду светового потока необходима инверсная заселенность энергетических уровней?
  4. Каков принцип работы трех - и четырехуровневого лазера?
  5. Объясните принцип получения инверсной населенности в смеси газов.
  6. Нарисуйте принципиальную схему лазера и расскажите принцип его работы.
  7. Нарисуйте схему энергетических уровней лазера на смеси Не-Ne, расскажите о возможных переходах между уровнями.
  8. Зачем в газоразрядной трубке выходные окна ставятся под углом Брюстера?
  9. Чем объясняется высокая направленность излучения лазера?
  10. В чем заключается особенности индуцированного излучения?

Самым распространенным газовым лазером является гелий-неоновый (He-Ne ) лазер (лазер на нейтральных атомах), который работает на смеси гелия и неона в соотношении 10:1. Этот лазер также является первым лазером непрерывного действия.

Рассмотрим энергетическую схему уровней гелия и неона (рис.3.4). Генерация происходит между уровнями неона, а гелий добавляется для осуществления процесса накачки. Как видно из рисунка, уровни 2 3 S 1 и 2 1 S 0 гелия расположены, соответственно, близко к уровням 2s и 3s неона. Поскольку уровни гелия 2 3 S 1 и 2 1 S 0 являются метастабильными, то при столкновении метастабильных возбужденных атомов гелия с атомами неона, произойдет резонансная передача энергии к атомам неона (соударения второго рода).

Таким образом, уровни 2s и 3s неона могут заселяться и, следовательно, с этих уровней может идти генерация. Время жизни s -состояний (t s »100 нс) намного больше времени жизни р -состояний (t р »10 нс), поэтому выполняется условие для работы лазера по четырехуровневой схеме:

1 1 S Þ (3s, 2s) Þ(3p,2p) Þ 1s .

Лазерная генерация возможна на одном из переходов a , b , c соответственно с длинами волн l а =3,39 мкм, l b =0,633 мкм, l с =1,15 мкм, которые можно получить подбором коэффициента отражения зеркал резонатора или введением в резонатор дисперсионных элементов.

Рис. 3.4. Схема энергетических уровней гелия и неона.

Рассмотрим генерационую характеристику такого лазера.

Рис.3.5. Генерационная характеристика гелий-неонового лазера.

Первоначальный рост выходной мощности при увеличении тока накачки объясняется инверсией населенности. После достижения максимальной мощности при дальнейшем увеличении тока накачки кривая начинает спадать. Это объясняется тем, что 2р и 1s уровни не успевают релаксировать, т.е. электроны не успевают перейти на низкий энергетический уровень и количество электронов на соседних 2р и 1s уровнях становится одинаковым. В этом случае отсутствует инверсия.

КПД гелий-неоновых лазеров имеет порядок 0,1 %, что объясняется низкой объемной плотностью возбужденных частиц. Выходная мощность типичного He-Ne –лазера P ~5-50 мВт, расходимость q ~1 мрад.

Аргоновый лазер

Это самые мощные лазеры непрерывного действия в видимой и ближней ультрафиолетовой области спектра относящиеся к ионным газовым лазерам. Верхний лазерный уровень в рабочем газе заселяется благодаря двум последовательным столкновениям электронов при электрическом разряде. При первом столкновении образуются ионы из нейтральных атомов, а при втором происходит возбуждение этих ионов. Следовательно, накачка представляет собой двухступенчатый процесс, эффективность каждого из которых пропорциональна плотности тока. Для осуществления эффективной накачки необходимы достаточно большие плотности тока.

Диаграмма энергетических уровней лазера на Ar + показана на рис. 3.3. Излучение лазера в линиях между 454,5 нм и 528,7 нм происходит при заселении группы уровней 4p путем возбуждения электронным ударом основного или метастабильных состояний Ar + .

3.5 СО 2 -лазер

МолекулярныеСО 2 –лазеры являются среди газовых лазеров самыми мощными непрерывными лазерами, вследствие наибольшего КПД преобразования электрической энергии в энергию излучения (15-20 %). Лазерная генерация происходит на колебательно-вращательных переходах и линии излучения этих лазеров находятся в дальней ИК-области, которые расположены на длинах волн 9,4 мкм и 10,4 мкм.

В СО 2 –лазере используется смесь газов СО 2 , N 2 и He . Накачка осуществляется непосредственно при столкновениях молекул СО 2 с электронами и колебательно возбужденными молекулами N 2 . Высокая теплопроводность He в смеси способствует охлаждению СО 2 , что приводит к обеднению нижнего лазерного уровня, заселяемого в результате теплового возбуждения. Таким образом, присутствие N 2 в смеси способствует высокой заселенности верхнего лазерного уровня, а присутствие He – обеднению нижнего уровня, а в итоге совместно они приводят к повышению инверсии населенностей. Диаграмма энергетических уровней СО 2 –лазера показана на рис. 3.4. Лазерная генерация осуществляется при переходе между колебательными состояниями молекулы СО 2 n 3 Þn 1 или n 3 Þn 2 с изменением вращательного состояния.


Рис. 3.4. Диаграмма энергетических уровней N 2 и СО 2 в СО 2 –лазере.

СО 2 –лазер может работать как в непрерывном, так и в импульсных режимах. В непрерывном режиме его выходная мощность может достигать нескольких киловатт.

Устройство гелий-неонового лазера

Рабочим телом гелий-неонового лазера служит смесь гелия и неона в пропорции 5:1, находящаяся в стеклянной колбе под низким давлением (обычно около 300 Па). Энергия накачки подаётся от двух электрических разрядников с напряжением около 1000÷5000 вольт (в зависимости от длины трубки), расположенных в торцах колбы. Резонатор такого лазера обычно состоит из двух зеркал - полностью непрозрачного с одной стороны колбы и второго, пропускающего через себя около 1 % падающего излучения на выходной стороне устройства.

Гелий-неоновые лазеры компактны, типичный размер резонатора - от 15 см до 2 м, их выходная мощность варьируется от 1 до 100 мВт.

Принцип действия

Гелий-неоновый лазер. Светящийся луч в центре - электрический разряд.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Гелий-неоновый лазер" в других словарях:

    гелий-неоновый лазер - helio neono lazeris statusas T sritis radioelektronika atitikmenys: angl. helium neon laser vok. Helium Neon Laser, m rus. гелий неоновый лазер, m pranc. laser à mélange d hélium et néon, m; laser hélium néon, m … Radioelektronikos terminų žodynas

    Лазер с ядерной накачкой это лазерное устройство, возбуждение активной среды которого происходит за счет ядерного излучения (гамма кванты, ядерные частицы, продукты ядерных реакций). Длина волны излучения такого устройства может быть от… … Википедия

    У этого термина существуют и другие значения, см. Лазер (значения). Лазер (лаборатория NASA) … Википедия

    Квантовый генератор, источник мощного оптического излучения (laser аббревиатура выражения light amplification by stimulated emission of radiation усиление света вынужденным излучением). Принцип действия лазера тот же, что и у ранее созданного… … Энциклопедия Кольера

    Источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении (См. Вынужденное излучение) атомов и молекул. Слово «лазер» составлено из начальных букв (аббревиатура) слов… …

    Лазер с газообразной активной средой. Трубка с активным газом помещается в Оптический резонатор, состоящий в простейшем случае из двух параллельных зеркал. Одно из них является полупрозрачным. Испущенная в каком либо месте трубки … Большая советская энциклопедия

    Оптический квант. генератор с газообразной активной средой. Газ, в к ром за счёт энергии внеш. источника (накачки) создаётся состояние с инверсией населённостей двух уровней энергии (верхний и нижний лазерные уровни), помещается в оптический… … Физическая энциклопедия

    Лазер (лаборатория НАСА) Лазер (англ. laser, сокр. от Light Amplification by Stimulated Emission of Radiation «Усиление света с помощью вынужденного излучения») устройство, использующее квантовомеханический эффект вынужденного (стимулированного) … Википедия

РАБОТА 17. ИЗУЧЕНИЕ ХАРАКТЕРИСТИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

ЦЕЛЬ РАБОТЫ:

1. Ознакомиться с принципом действия и устройством гелий-неоново­го лазера.

2. Ознакомиться с интерференцией, дифракцией и поляризацией лазерного излучения.

3. Определить периоды двумерной структуры.

4. Определить угол расходимости лазерного луча.

КРАТКАЯ ТЕОРИЯ

Лазер принципиально новый источник света. От из­­­­­­лучения обыч­ных источников (лампы накаливания, лампы дневного света и т.д.) излучение лазера отличается тем, что оно близко к монохроматичес­кому, обладает исключительно высокой временной и пространственной когерентностью, очень малой расходимостью, а, следовательно, ис­ключительно высокой плотностью электромагнитной энергии. Кроме того луч лазера поляризован.

Принцип действия лазера основан на трех физическихявлениях: вынужденное излучение, инверсия населенности и положительная об­ратная связь.

Поведение атомов (молекул) подчиняется ­законам кван­­товой механики, согласно которым значения физических величин (например, энергии Е) могут принимать лишь определенные (дискретные) значе­ния. Для энергии эти значения принято графически изображать в ви­де так называемых уровней энергии (рис.1).

Самый нижний энергетический уровень называется основным, так как отвечает наиболееустойчивому состоянию частицы. Остальные уровни с более высокими значениями энергии называются возбужденными.

Процесс, сопровождающийся увеличением энергии атома, изображается как переход на более высокий энергетический уровень, про­цесс с уменьшением энергии - как переход на более низкий уровень.

Рассмотрим взаимодействие электромагнитного излучения (све­та) с атомами.

Первый вид взаимодействия: атом, находясь в основном состоянии, поглощает фотон, энергия которого достаточна для перехода в одно из возбужденных состояний (рис. 1а).

и второй : атом, находящийся в возбужденном состоянии,

спонтанно (самопроизвольно) переходит в более низкое энерге­тическое состояние: этот переход сопровождается излучением фотона (рис. 1в).

При спонтанных переходах различные атомы излучают неод­новременно и независимо, поэтому, фазы излучаемых фотонов не связаны между собой, направление излучения, его поляризация носят случайный характер, а частота излучения колеблется в некоторых пределах, определяемых шириной энергетических уровней Е 1 и Е 2 .

Спонтанное излучение ненаправленное, неполяризованное, немонохроматичное.

Существует, однако, третий вид взаимодействия , который называется вынужденным излучением. Если на атом, находящийся в возбужденном состоянии (рис.2), падает излучение с частотой ν соответствующей переходу атома в более низкое состояние (1), то атом переходит в него вынужденно под действием этого фотона, излучая при этом свой фотон, который называется вынужденным излучением.

Исключительно важно отметить характерное свойство вынужденного излучения: излученная волна (фотон) имеет точно то же направление и фазу, что и вынуждающая. Кроме этого эти две волны имеют одинаковые частоты и состояния поляризации.

При переходах 1→2 (рис. 1а) внешнее излучение поглощается, а при вынужденных переходах 2→1 (рис.2) наоборот, усиливается, т.к. к внешнему фотону добавляется фотон, испущенный атомом. Вероятности переходов 1→2 и 2→1одинаковы. Если большинство атомов находится в возбужденном состоянии, то тогда чаще будут происходить переходы 2→1. Другими словами, для усиления внешнего излучения необходимо, чтобы населенность уровня 2 была выше населенности уровня 1 или необходи­мо создать инверсию заселенности уровней.

При температуре Т число атомов N в состоянии с энергией Е определяется формулой Больцмана

N ~ exp(-E/kT)

где k – постоянная Больцмана.

Отсюда видно, что чем больше энергия состояния Е, тем меньше число N атомов находится в этом состоянии. Значит, в равновесном состоянии больше населены нижние уровни, и поглощение света преобладает над усилением.

Инверсия заселенности уровней отвечает неравновесному состоянию атомов среды.

Создать такое состояние можно искусственно, подводя
энергию к рабочему веществу, за счет которой атомы переводятся на верхний энергетический уровень. Такой процесс назы­вается накачкой. В разных типов лазеров накачка осуществля­ется по-разному: в твердотельных лазерах осуществляется за счет поглощения света от дополнительных ламп, в газовых - за счет передачи атомам газа энергии ускоренных элек­трическим полем электронов при их столкновениях.

Среда, в которой осуществлена инверсия заселенности, называется активной средой.


Слово "лазер" составлено из начальных букв английской фразы: "Light Amplification by Stimulated Emission of Radiation", что означает: "усиление света с помощью вынуж­денного излучениям". Лазеры также называют оптическими кван­товыми генераторами (ОКГ).

Газовые лазеры. Гелий-неоновый лазер.

Основным элементом гелий-неонового лазера непрерывного

действия является трубка 2 (рис.3), наполненная смесью гелия и неона с парциальными давлениями порядка 1 и 0,1 мм.рт.ст., соответственно. Концы трубки закрыты плоскопараллельными стеклянными пластинами 3, установленными под углом Брюстера к ее оси.

Накачка в газовом лазере осуществляется за счет энергии источника питания, поддерживающего тлеющий разряд между катодом 4 и анодом 5. Разряд в трубке возникает при 1,5-2,0 кВ. Разрядный ток трубки составляет десятки миллиам­пер.

Рабочими атомами гелий-неонового лазера являются атомы

неона, излучающие красные фотоны (λ =632,8 нм), На рис. 4 приведена упрощенная схема уровней атомов неона и гелия.

В чистом неоне заселение состояний 3S при накачке малоэффективно, поскольку этот уровень имеет малое время жизни, и атом неона спонтанно переходит в состояние 2Р.

Ситуация меняется, когда к неону добавляют гелий. Энер­гия уровня 2S гелия равна энергии уровня 3S неона. Уровень же энергии 2S гелия является долгоживущим и эффективно засе­ляется при накачке. При столкновениях возбужденных атомов гелия с атомами неона энергия передается атомам неона. В результате создается инверсная заселенность рабочего уровня 3S неона.



После этого в активной среде происходят многочисленные
акты спонтанных переходов 3S→2P, появляющиеся фотоны (λ =632,8 нм) приводят к вынужденным переходам. Те фотоны, которые движутся под некоторым углом к оси трубки, не участвуют в получении луча лазера. Формирование луча лазера идет только за счет фотонов, испускаемых вдоль оси трубки.

Усиление луча идет значи­тельно быстрее, если свет возвращать обратно в активную сре­ду, где он снова будет усиливаться за счет вынужденных пере­ходов. О такой ситуации говорят как об обратной связи. Для создания положительной обратной связи в лазерах используют оптический резонатор, который представляет собой два зеркала 1 (рис.3).

Нарастание интенсивности вынужденного излучения происхо­дит лавинообразно, и она становится существенно больше интен­сивности спонтанного излучения, которое в дальнейшем можно не учитывать.

Генерация луча лазера начинается в тот момент, когда увеличение энергии излучения за счет вынужденных переходов превосходит потери энергии за каждый проход резонатора. Для вывода луча из резонатора одно из зеркал 1 делается полупрозрачным. Поверхности обоих зеркал покрыты пленками, толщина которых подбирается таким образом, чтобы отражались волны нужной длины волны, а все другие гасились.

Прозрачность зеркал резонатора обычно меньше 1%.

Характеристики лазерного излучения.


Похожая информация.


Газовые гелий-неоновые лазеры (He-Ne лазеры) производства немецкой компании LSS имеют надежную конструкцию, хорошее качество луча и долгий срок службы - до 20 000 часов. Серия гелий-неоновых лазеров представлена большим разнообразием моделей лазеров, одномодовых и мультимодовых, с выходной мощностью от 0,5 до 35 мВт, излучающих в спектральном диапазоне красного, зеленого и желтого. Есть также лазерные трубки с окном Брюстера для образовательных и научных целей.

Все модели комплектуются блоком питания. Газовые ионные аргоновые лазеры серии LGK удовлетворяют внушительному перечню мировых стандартов и имеют сертификаты CDRH, IEC, CSA, CE, TUV, UL. Компания LSS осуществляет эффективную поддержку для работающих по всему миру лазеров собственного производства, предоставляя своим клиентам удобный и быстрый сервис по замене лазерных трубок. Помимо серийных моделей, компания выпускает лазерные системы под индивидуальный заказ.

Гелий-неоновый лазер предназначен для широкого круга приложений таких областей, как сканирующая микроскопия, спектроскопия, метрология, промышленные измерения, позиционирование, выравнивание, направленных, тестирования, проверки кода, научные, фундаментальные и медицинские исследования, а также для образовательных целей.


Технические характеристики лазерных модулей

В таблицах ниже приведены ключевые характеристики лазеров. Для всех пунктов ниже перечисленные характеристики представляют собой общую производительность стандартных моделей. Индивидуальные характеристики могут быть оптимизированы для конкретных приложений. Пожалуйста, свяжитесь с консультантом нашей компании, если у Вас есть особые пожелания.

Технические характеристики лазерных трубок

Технические характеристики блока питания

Все модели газовых ионных аргоновых лазеров серии LGK комплектуются блоком питания производства LSS.