П-, пи-, пд-, пид - регуляторы. Преобразователь частоты и пид-регулятор — общая настройка 18 описание работы простейшего регулятора

Настройка регуляторов

Связи между показателями качества

Описанные выше показатели качества связаны между собой примерными соотношениями, справедливыми только для систем не выше второго порядка:

; t p = ; ; M = .

Для регулирования объектами управления, как правило, используют типовые регуляторы, которые можно разделить на аналоговые и дискретные. К дискретным регуляторам относятся импульсные, релейные и цифровые. Аналоговые реализуют типовые законы регулирования, названия которых соответствуют названиям типовых звеньев.

Входным сигналом для аналоговых регуляторов является величина ошибки регулирования, которая определяется как разность между заданным и текущим значениями регулируемого параметра (e = х - у). Выходным сигналом является величина управляющего воздействия u, подаваемая на объект управления. Преобразование входного сигнала в выходной производится согласно типовым законам регулирования, рассматриваемым ниже.

1) П-закон (пропорциональное регулирование) . Согласно закон пропорционального регулирования управляющее воздействие должно быть пропорционально величине ошибки. Например, если регулируемый параметр начинает отклоняться от заданного значения, то воздействие на объект следует увеличивать в соответствующую сторону. Коэффициент пропорциональности часто обозначают как K 1:

Тогда передаточная функция П-регулятора имеет вид

W П (s) = K 1 .

Если величина ошибки стала равна, например, единице, то управляющее воздействие станет равным K 1 (см. рисунок 1.52).


Рисунок 1.52

Примером системы с П-регулятором может служить система автоматического наполнения емкости (сливной бачок). На рисунке 1.53 обозначены:

L и L зад - текущий уровень в емкости (регулируемая величина) и его заданная величина,

F пр и F сток - расходы жидкости притекающей и стекающей из емкости.

Управляющим воздействием является F пр. F сток - возмущение.

Принцип действия понятен из рисунка: при опустошении емкости поплавок через кронштейн открывает задвижку подачи жидкости. Причем, чем больше разница уровней е = L зад - L, тем ниже поплавок, тем больше открыта задвижка и, соответственно, больше поток жидкости F пр. По мере наполнения емкости ошибка уменьшается до нуля и, соответственно, уменьшается F пр до полного прекращения подачи. То есть F пр = K 1 . (L зад - L).

Достоинство данного принципа регулирования в быстродействии. Недостаток - в наличии статической ошибки в системе. Например, если жидкость вытекает из емкости постоянно, то уровень всегда будет меньше заданного.

2) И-закон (интегральное регулирование) . Управляющее воздействие пропорционально интегралу от ошибки. То есть чем дольше существует отклонение регулируемого параметра от заданного значения, тем больше управляющее воздействие:


.

Передаточная функция И-регулятора:

При возникновении ошибки управляющее воздействие начинает увеличиваться со скоростью, пропорциональной величине ошибки. Например, при е = 1 скорость будет равна K 0 (см. рисунок 1.54).


Рисунок 1.54

Достоинство данного принципа регулирования в отсутствии статической ошибки, т.е. при возникновении ошибки регулятор будет увеличивать управляющее воздействие, пока не добьется заданного значения регулируемой величины. Недостаток - в низком быстродействии.

3) Д-закон (дифференциальное регулирование) . Регулирование ведется по величине скорости изменения регулируемой величины:

То есть при быстром отклонении регулирующей величины управляющее воздействие по модулю будет больше. При медленном - меньше. Передаточная функция Д-регулятора:

W Д (s) = K 2 s.

Регулятор генерирует управляющее воздействие только при изменении регулируемой величины. Например, если ошибка имеет вид ступенчатого сигнала е = 1, то на выходе такого регулятора будет наблюдаться один импульс (d-функция). В этом заключается его недостаток, который обусловил отсутствие практического использования такого регулятора в чистом виде.

На практике типовые П-, И- и Д-законы регулирования редко используются в чистом виде. Чаще они комбинируются и реализуются в виде ПИ-регуляторов, ПД-регуляторов, ПИД-регуляторов и др.

ПИ-регулятор (пропорционально-интегральный регулятор) представляет собой два параллельно работающих регулятора: П- и И-регуляторы (см. рисунок 1.55). Данное соединение сочетает в себе достоинства обоих регуляторов: быстродействие и отсутствие статической ошибки.

ПИ-закон регулирования описывается уравнением

и передаточной функцией

W ПИ (s) = K 1 + .

То есть регулятор имеет два независимых параметра (настройки): K 0 - коэффициент интегральной части и K 1 - коэффициент пропорциональной.

При возникновении ошибки е = 1 управляющее воздействие изменяется как показано на рисунке 1.56.

Рисунок 1.56

ПД-регулятор (пропорционально-дифференциальный регулятор) включает в себя П- и Д-регуляторы (см. рисунок 1.57). Данный закон регулирования описывается уравнением

и передаточной функцией:

W ПД (s) = K 1 + K 2 s.

Данный регулятор обладает самым большим быстродействием, но также и статической ошибкой. Реакция регулятора на единичное ступенчатое изменение ошибки показана на рисунке 1.58.


Рисунок 1.58

ПИД-регулятор (пропорционально-интегрально-дифференциальный регулятор) можно представить как соединение трех параллельно работающих регуляторов (см. рисунок 1.59). Закон ПИД-регулирования описывается уравнением:

и передаточной функцией

W ПИД (s) = K 1 + + K 2 s.

ПИД-регулятор в отличие от других имеет три настройки: K 0 , K 1 и K 2 .

ПИД-регулятор используется достаточно часто, поскольку он сочетает в себе достоинства всех трех типовых регуляторов. Реакция регулятора на единичное ступенчатое изменение ошибки показана на рисунке 1.60.


Можно утверждать, что наибольшее быстродействие обеспечивает П-закон , - исходя из соотношения tp / T d .

Однако, если коэффициент усиления П-регулятора Кр мал (чаще всего это наблюдается в с запаздыванием), то такой не обеспечивает высокой точности регулирования, т.к. в этом случае велика величина .

Если Кр > 10, то П-регулятор приемлем, а если Если Кр < 10, то требуется введение в закон управления составляющей.

ПИ-закон регулирования

Наиболее распространенным на практике является ПИ-регулятор, который обладает следующими достоинствами:

  1. Обеспечивает нулевую регулирования.
  2. Достаточно прост в настройке, т.к. настраиваются только два параметра, а именно коэффициент усиления Кр и постоянная времени интегрирования Ti. В таком регуляторе имеется возможность оптимизации величины отношения Кр/Ti-min, что обеспечивает управление с минимально возможной среднеквадратичной регулирования.
  3. Малая чувствительность к шумам в измерения (в отличие от ПИД-регулятора).

ПИД-закон регулирования

Для наиболее ответственных контуров регулирования можно рекомендовать использование , обеспечивающего наиболее высокое быстродействие в системе.

Однако следует учитывать, что это выполняется только при его оптимальных настройках (настраиваются три параметра).

С увеличением запаздывания в системе резко возрастают отрицательные фазовые сдвиги, что снижает эффект действия дифференциальной составляющей регулятора. Поэтому качество ПИД-регулятора для систем с большим запаздыванием становится сравнимо с качеством работы ПИ-регулятора.

Кроме этого, наличие шумов в канале измерения в системе с ПИД-регулятором приводит к значительным случайным колебаниям управляющего сигнала регулятора, что увеличивает дисперсию ошибки регулирования и износ механизма.

Таким образом, ПИД-регулятор следует выбирать для систем регулирования, с относительно малым уровнем шумов и величиной запаздывания в управления. Примерами таких систем является системы регулирования температуры.

Особенности П, ПИ и ПИД регулирования

Наличие в приборах функции выходного устройства ПИД регулирования подразумевает возможность реализации трех типов регулирования: П-, ПИ- и ПИД регулирования.

П регулирование . Выходная мощность прямопропорциональна ошибке регулирования. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования. Пропорциональное регулирование можно рекомендовать для малоинерционных систем с большим коэффициентом передачи. Для настройки пропорционального регулятора следует сначала установить коэффициент пропорциональности максимальным, при этом выходная мощность регулятора уменьшится до нуля. После стабилизации измеренного значения, следует установить заданное значение и постепенно уменьшать коэффициент пропорциональности, при этом ошибка регулирования будет уменьшаться. Когда в системе возникнут периодические колебания, коэффициент пропорциональности следует увеличить так, чтобы ошибка регулирования была минимальной, а периодические колебания максимально уменьшились.

ПИ регулирование. Выходная мощность равна сумме пропорциона- льной и интегральной составляющих. Чем больше коэффициент пропор- циональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая. ПИ регулирование обеспечивает нулевую ошибку регулирования и нечувствительно к помехам измерительного канала. Недостатком ПИ регулирования является медленная реакция на возмущающие воздействия. Для настройки ПИ регулятора следует сначала установить постоянную времени интегрирования равный нулю, а коэффициент пропорциональности - максимальным. Затем как при настройке пропорционального регулятора, уменьшением коэффициента пропорциональности нужно добиться появления в системе незатухающих колебаний. Близкое к оптимальному значение коэффициента пропорциональности будет в два раза больше того, при котором возникли колебания, а близкое к оптимальному значение постоянной времени интегрирования - на 20% меньше периода колебаний.

ПИД регулирование. Выходная мощность равна сумме трех состав- ляющих: пропорциональной, интегральной и дифференциальной. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленее накапливается интегральная составляющая, чем больше постоянная времени дифференцирования, тем сильнее реакция системы на возмущающее воздействие. ПИД-регулятор применяется в инерционных системах с относительно малым уровнем помех измерительного канала. Достоинством ПИД регулятора является быстрый выход на режим, точное удержание заданной температуры и быстрая реакция на возмущающие воздействия. Ручная настройка ПИД является крайне сложной, поэтому рекомендуется использовать функцию автонастройки.

Автонастройка ПИД регулирования в приборах ЧАО “ТЭРА”:

Главное, что определяет качество ПИД регулятора - это его способность точно и быстро выходить на заданную температуру, для чего у всех современных ПИД регуляторов обязательно присутствует функция автонастройки. Стандартных алгоритмов автонастройки ПИД не существуют, на практике каждый производитель применяет свой собственный алгоритм. Поэтому, пользователь, приобретая один и тот же товар под названием “ПИД регулятор” у разных производителей, на своем объекте может получить совсем разные результаты их применения. Основными достоинствами алгоритма автонастройки в ПИД регуляторах ЧАО “ТЭРА” являются:

  • автонастройка и выход на регулирование без перерегулирования (у стандартных ПИД регуляторов перерегулирование может достигать 50-70% от заданной температуры, что на некоторых объектах регулирования технологически нежелательно или вообще запрещено)
  • продолжительность автонастройки в среднем в 2 раза короче, чем у других производителей (крайне важная характеристика для объектов регулирования с часто изменяемыми свойствами, особенно для инерционных объектов)

Автонастройку можно производить при любом стабильном состоянии объекта регулирования. Кроме того, чем больше разность между начальной и заданной температурой, тем точнее определяются коэффициенты ПИД регулятора. Все коэффициенты ПИД хранятся в энергонезависимой памяти прибора.

Автонастройку необходимо повторить, если:

  • изменилась мощность исполнительного устройства
  • изменились физические свойства объекта регулирования (масса, емкость, теплообмен и т.п.)
  • объект регулирования заменен другим неидентичным
  • при значительном изменении заданной температуры

ПИД-регулятор - это прибор для управления технологическим процессом, который используется в методе ПИД-регулирования, основанном на трех законах регулирования: пропорциональном, интегральном и дифференциальном.

Принцип действия ПИД-регулятора

Интегральный сильфон и переменное ограничение позволяет обеспечить интегральное регулирование. Два дифференциальных сильфона и другое переменное ограничение дает возможность регулятору осуществлять дифференциальное регулирование.

Если выход увеличивается, то входной сильфон и нижний дифференциальный сильфон расширяются. Верхний дифференциальный сильфон расширяется позднее из-за переменного ограничения. Балансир поворачивается, и выход немедленно повышается.

Когда входной сигнал полностью перетечет в верхний дифференциальный сильфон, этот сильфон приложит силу, которая уничтожит силу, приложенную нижним дифференциальным сильфоном. На этой точке дифференциальное регулирование прекращается. В то же время, когда это происходит, сильфон обратной связи расширяется в результате изменения выхода. Изменение выхода подается на интегральный сильфон, который вызывает силу, стремящуюся удержать клапан ближе к соплу. Это действие держит выход на высоком уровне в течение времени, когда переменная процесса не равна уставке. Выход будет продолжать увеличиваться до тех пор, пока переменная процесса не вернется в заданному значению уставки.

Где применяется ПИД-регулятор

ПИД-регулятор будет хорошим выбором для работающей на газе печи для подогрева нефти, потому что последующий процесс, куда поступает подогретая нефть, допускает лишь очень маленькие отклонения температуры нефти от заданного значения, а большие запаздывания в процессе подогрева делают очень трудной задачу определения и устранения отклонений.


Одна из причин запаздывания - емкость. Печь имеет способность сохранять большое количество тепла внутри своих стенок. Накопленная теплота передается к нефти, но передача не происходит мгновенно. Если внутренние стенки нагреты слишком сильно, потребуется некоторое время для понижения их температуры, в течение которого нефть может быть перегрета. Если внутренние стенки не достаточно нагреты, то нефть может не получить достаточно тепла.

Дифференциальная составляющая ПИД-регулятора помогает преодолевать запаздывания посредством выработки эффективных упреждающих воздействий. Интегральная составляющая непрерывно корректирует выходной сигнал при наличии смещения пока регулируемая температура не возвращается к уставке.

Регуляторы с линейным законом регулирования по математической зависимости между входными и выходными сигналами подразделяются на следующие основные виды:

  • 1) П-регулятор (пропорциональный);
  • 2) И-регулятор (интегральный);
  • 3) ПИ-регулятор (пропорционально-интегральный (изодром- ный));
  • 4) регуляторы с предварением (с опережением):
    • ПД-регулятор (пропорционально-дифференциальный);
    • ПИД-регулятор (пропорционально-интегрально-дифференциальный).

В системах автоматического регулирования наиболее распространенными являются П-регулятор, ПИ-регулятор, ПИД-регулятор.

В зависимости от задающего воздействия и параметров объекта регулирования подбирают регулятор с определенной характеристикой W p . Изменение W p адекватно ведет к изменению коэффициентов дифференциального уравнения общего передаточного звена (регулятор-объект), и тем самым достигается необходимое качество регулирования. В промышленных регуляторах эти величины называются параметрами настройки. Параметрами настройки являются: коэффициент усиления; зона нечувствительности; постоянная времени интегрирования; постоянная времени дифференцирования и т.д. Для изменения параметров настройки в регуляторах имеются органы настройки (управления) . Наиболее распространены регуляторы на один контур, но в настоящее время все больше появляется многоконтурных регуляторов. Такие регуляторы часто позволяют реализовать взаимосвязанное регулирование параметров.

Рассмотрим смысл закона регулирования регулятора на примере САР температуры целевого продукта в теплообменнике (рис. 3.9). Эта схема нам уже известна. Это САР по отклонению. Здесь а - сигнал рассогласования 90° - 100° = - 10°С =о. Закон регулирования регулятора (контроллера) определяет характер перемещения затвора регулирующего органа в новое положение. На место регулятора (контроллера) в данной схеме будем поочередно ставить линейные регуляторы и исследовать влияние регулирующего воздействия р от каждого закона регулирования на характер перемещения затвора регулирующего органа. Рассматриваем линейные регуляторы с идеальными характеристиками.

П-регулятор. Это регулятор, у которого ц пропорционально о, т.е. где К - коэффициент передачи (коэффициент усиления).

Рис. 3.9.

При скачке входной величины а на значение (минус 10°С) затвор регулирующего органа переходит в новое ц-положение скачком (рис. 3.10). Регуляторы, действующие по П-закону, просты по устройству и при эксплуатации надежны. Однако их характеризуют малое перестановочное усилие на регулирующем органе, низкая точность поддержания заданного параметра. Параметром настройки регулятора является коэффициент передачи К.

Рис 3.10.

Достоинство такого регулирования: регулирующий орган быстро перемещается на новое положение, т.е. высокая скорость регулирования. Недостаток: имеет место остаточное отклонение, т.е. имеет место некоторая ошибка регулирования (рис. 3.11). Поэтому П-ре- гуляторы применяются там, где нет строгого требования к точности регулирования.

Рис. 3.11.

И-регулятор. Это регулятор, у которого ц пропорционально интегралу а:

При скачке входной величины на значение минус КТС затвор регулирующего органа медленно переходит в новое положение (рис. 3.12). Как бы ни было мало отклонение регулируемой величины от заданного значения, интегральный регулятор будет продолжать перемещать регулирующий орган вплоть до необходимого положения. Достоинство: отсутствие остаточного отклонения регулируемого параметра от заданного значения. Недостаток: низкая скорость регулирования, т.е. затвор в новое положение перемещается медленно.

ПИ-регулятор. Это параллельное соединение П- и И- регуляторов. ПИ-регулятор сочетает положительные моменты П- и И-регу- ляторов. ПИ-регулятор оказывает воздействие на регулирующий орган пропорционально отклонению и интегралу отклонения регулируемой величины. У ПИ-регулятора (рис. 3.13) регулирующее воздействие р перемещает затвор пропорционально отклонению параметра о и интегралу отклонения о.

Рис. 3.12.

Рис. 3.13.

где К (коэффициент усиления) и Т к (постоянная времени интегрирования) - параметры настройки регулятора.

Как видим, математическое выражение данного закона - это сумма двух предыдущих формул. Затвор регулирующего органа часть пути (а, б) пройдет скачком по П-закону, а оставшуюся часть (б, в) - медленно по И-закону.

Переходный процесс при пропорционально-интегральном регулировании (ПИ-регулировании) показан на рис. 3.14.

Регуляторы с предварением

П- и ПИ- регуляторы не могут упреждать ожидаемое отклонение регулируемой величины, реагируя только на уже имеющееся отклонение. Возникает необходимость в регуляторе, который вырабатывал бы дополнительное регулирующее воздействие, пропорциональное скорости отклонения регулируемой величины от заданного значения. Такое регулирующее воздействие используется в дифференциальных ПД- и ПИД-регуляторах.

Рис. 3.14.

ПД-регулятор. Это такой регулятор (рис. 3.15), у которого выходной сигнал р пропорционален входному сигналу о и производной do/ 5т, т.е.

где К - коэффициент усиления; T d

Рис. 3.15.

Производная dc/dx характеризует тенденцию изменения (отклонения) регулируемой величины. Величина и знак воздействия от производной позволяют регулятору как бы предвидеть, в какую сторону и насколько отклонилась бы регулируемая величина под действием данного возмущения. Это предвидение позволяет регулятору предварять своим воздействием возможное отклонение регулируемой величины. В результате процесс регулирования завершается в более короткое время. Сначала затвор скачком переходит из точки а в точку в (П-закон), т.е. больше, чем надо, затем отскакивает назад в точку б (дифференциальное действие) и остается в этом положении.

ПИД-регулятор. ПИД-регуляторы воздействуют на объект пропорционально отклонению регулируемой величины, интегралу от этого отклонения и скорости изменения регулируемой величины. ПИД-регулятор сочетает достоинства П-регулятора, И-регулятора, ПД-регулятора (рис. 3.16). Соответственно, в уравнении регулятора присутствуют три формулы законов регулирования:

где К - коэффициент пропорциональности; Г и - постоянная времени интегрирования; Т д - постоянная времени дифференцирования.

Эти параметры можно настроить вручную.

Параметрами настройки ПИД-регуляторов являются: коэффициент пропорциональности регулятора к р; постоянная времени интегрирования Г и; постоянная времени дифференцирования Т д.

Рис.

При скачкообразном изменении регулируемой величины ПИД- регулятор в начальный момент времени оказывает мгновенное бесконечно большое воздействие на объект регулирования, затем величина воздействия резко падает до значения, определяемого пропорциональной составляющей, после чего постепенно начинает оказывать влияние интегральная составляющая регулятора. Переходный процесс при этом (рис. 3.17-3.18) имеет минимальные отклонения по амплитуде и по времени. При наличии аналогового управляющего сигнала регулятор может иметь один или два дискретных сигнала для реализации функций сигнализации, защиты или других. Так, например, ПИД-регулятор температуры может формировать сигналы тревоги при выходе регулируемого параметра за указанные границы.

Рис. 3.17.

Рис. 3.18.

ПИД-закон используется во многих контроллерах. Сначала затвор скачком переходит из точки а в точку в (П-закон) (т.е. больше, чем надо), затем отскакивает назад в точку б (дифференциальное действие), а далее затвор медленно перемещается в конечное положение г (И-закон). В результате процесс регулирования завершается в более короткое время и с меньшей погрешностью регулирования.

Часто в системах автоматического регулирования циклических процессов требуется по определенной программе менять величину задания регулятора. Для этого используется программный задатчик. Параметрами оценки таких регуляторов являются число шагов программы, максимальная и минимальная длина шага программы, возможность плавного изменения задания на шаге.

Итак, рассмотрены идеальные характеристики линейных регуляторов. В реальности все происходит во времени (рис. 3.19).

В графиках нужно учитывать также запаздывание (чистое (транспортное) т 0 и емкостное запаздывание т е.


Рис. 3.19. ПИД-закон идеальный а и реальный б с учетом действия по времени