Открытость-свойство реальных систем. Открытая система (теория систем) Понятие открытой системы ввел

Введение

Структура высшего учебного заведения, как и структура любой организации, не может быть чем-то статичным, не подлежащим изменению и развитию. Особенно динамично должна совершенствоваться структура вуза в современной ситуации: условиях переходного периода. Высокий уровень динамики структурных перестроек связан со следующими факторами :

· Повышение самостоятельности вузов в решении своих проблем, обусловленное развитием многоканального финансирования, а в правовом плане - появлением нормативных актов (Закон «Об образовании», Закон «О высшем и послевузовском профессиональном образовании»), создающих правовую основу самостоятельности вуза в решении вопросов структурных преобразований;

· Изменение запроса на образовательные и научно - исследовательские услуги и работы.

В перечне вузовских специальностей и направлений появилось большое количество новых, нередко не укладывающихся в сложившуюся структуру, факультетов и других образовательных подразделений вуза. Многие вузы создали школы бизнеса, факультеты и институты, пошли по пути выделения новых специальностей в самостоятельные подразделения или, наоборот, укрупнения факультетов, объединения их в институты.

На современном этапе ВУЗ не может успешно функционировать, будучи закрытой системой. Поэтому большое значение приобретает изучение ВУЗа как открытой образовательной системы, ее целей, задач и структуры.

Понятие открытой системы, ее свойства

В теории управления можно выделить три основных и наиболее общих подхода: функциональный, процессный, системный и ситуационный .

Согласно функциональному (процессному) подходу управление образовательным учреждением есть совокупность управленческих функций.

В рамках системного подхода (С.И. Архангельский, В.П. Беспалько, В.И. Зверева, Ю.А. Конаржевский, П.И. Третьяков, Т.К. Чекмарева, Т.И. Шамова, С.В. Яблонский и др.) образовательное учреждение рассматривается как сложная социально-педагогическая система, т. е. как совокупность взаимосвязанных между собой элементов. В этом случае деятельность руководителя есть построение целостной модели управления школой с учетом всего многообразия субъективных и объективных факторов ее развития, а также модели управления ее разнообразными компонентами, как совокупностью взаимозависимых подсистем, с учетом того, что неправильное функционирование одной из них может повлиять на систему управления в целом.

Ситуационный подход (М.Альберт, С.Доннел, Ю.Ю. Екатерино-славский, Г. Кунц, М.Х. Мескон, Т. Питерс, Р.Уотерман, Ф.Хедоури и др.) есть управление образовательным учреждением в зависимости от особенностей конкретной ситуации.

В специальной литературе (В.Г. Афанасьев, П.К. Анохин, Н.В. Кузьмина, Ю.А. Конаржевский, В.А. Якунин и др.) отмечается, что любая система имеет: цель, задачи, функции, признаки, структуру, атрибуты, отношения или взаимодействия, наличие двух или более типов связи (прямой и обратной), уровни иерархии .

Различают закрытые и открытые системы, отражающие характер связи системы и среды. Системы считаются открытыми , когда между системой и средой происходит обмен (ввод, вывод), или закрытыми, когда такого обмена не происходит. Под вводом подразумевается все, что поступает в систему извне. Речь в этом случае может идти о материалах, энергии и информации. Путем переработки материала, поступившего в систему, вырабатывается новый материал, передаваемый во внешний мир (вывод).

Педагогическая система есть «социально обусловленная целостность взаимодействующих на основе сотрудничества между собой, окружающей средой и ее духовными и материальными ценностями участников педагогического процесса, направленная на формирование и развитие личности» . Это «относительно устойчивая совокупность элементов, организационное соединение людей, сфер их действия, порядка выполнения функций, пространственно-временных связей, отношений, способов взаимодействия и структуры деятельности в интересах достижения определенных воспитательно-образовательных целей и результатов, решения запланированных культурно-развивающих задач воспитания и обучения человека» .

Каждая отдельно взятая педагогическая система (в частности, ВУЗ как образовательная система) является сложной потому, что сама в своем составе имеет подсистемы в виде групп, классов и т.п., но и сама эта система входит в качестве подсистемы в систему образования.

Педагогическую систему относительно закрытого типа характеризует четко выраженная внутренняя структура, часто иерархическая; она строится по определенным правилам, и индивид подчиняется в ней группе.

Наоборот, для открытой педагогической системы характерны высокая степень индивидуализма, минимум стремления членов коллектива к поддержанию как внутренних, так и внешних границ.

Под внутренними границами могут подразумеваться, например, границы между администрацией и сотрудниками, между старшими и младшими сотрудниками и т.д.

Под внешними границами имеется в виду то, что отделяет коллектив от остального общества.

Относительная открытость и относительная закрытость влияют на процессы, происходящие в системе. В рамках образовательных учреждений это видно довольно отчетливо.

ВУЗ, имеющий характер сравнительно замкнутой системы с четко очерченными границами по отношению к окружению, характеризуется, в частности тем, что имеет слабые контакты с внешним миром, редкую смену персонала, редко или никогда не участвует в обмене опытом, отвергает новые идеи, идеологии и методы обучения.

Образовательная структура открытого типа динамична, открыта опыту, имеет широкие контакты с внешним миром.

Что же такое открытая система?

Открытой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие аппаратные и программные продукты), которая построена в соответствии с открытыми спецификациями.

Напомним, что под термином «спецификация» в вычислительной технике понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, особых характеристик. Понятно, что не всякая спецификация является стандартом.

Использование при разработке систем открытых спецификаций позволяет третьим сторонам разрабатывать для этих систем различные аппаратные или программные средства расширения и модификации, а также создавать программноаппаратные комплексы из продуктов разных производителей.

Открытый характер стандартов и спецификаций важен не только для коммуникационных протоколов, но и для всех разнообразных устройств и программ, выпускаемых для построения сети. Нужно отметить, что большинство стандартов, принимаемых сегодня, носят открытый характер. Время закрытых систем, точные спецификации на которые были известны только фирме-производителю, ушло. Все осознали, что возможность взаимодействия с продуктами конкурентов не снижает, а, наоборот, повышает ценность изделия, так как его можно применить в большем количестве работающих сетей, собранных из продуктов разных производителей. Поэтому даже такие фирмы, как IBM, Novell и Microsoft, ранее выпускавшие закрытые системы, сегодня активно участвуют в разработке открытых стандартов и применяют их в своих продуктах.

Для реальных систем полная открытость является недостижимым идеалом. Как правило, даже в системах, называемых открытыми, этому определению соответствуют лишь некоторые части, поддерживающие внешние интерфейсы. Например, открытость семейства операционных систем Unix заключается, помимо всего прочего, в наличии стандартизованного программного интерфейса между ядром и приложениями, что позволяет легко переносить приложения из среды одной версии Unix в среду другой версии.

Модель OSI касается только одного аспекта открытости, а именно открытости средств взаимодействия устройств, связанных в компьютерную сеть. Здесь под открытой системой понимается сетевое устройство, готовое взаимодействовать с другими сетевыми устройствами по стандартным правилам, определяющим формат, содержание и значение принимаемых и отправляемых сообщений.

Если две сети построены с соблюдением принципов открытости, это дает следующие преимущества:

Возможность построения сети из аппаратных и программных средств различных производителей, придерживающихся одного и того же стандарта;

Безболезненная замена отдельных компонентов сети другими, более совершенными, что позволяет сети развиваться с минимальными затратами;

Легкость сопряжения одной сети с другой.

Классификация по степени распределенности

Открытая система - это система, состоящая из компонентов, которые взаимодействуют друг с другом через стандартные интерфейсы.

Главным преимуществом подхода открытых систем является упрощение комплексирования вычислительных систем за счет международной и национальной стандартизации аппаратных и программных интерфейсов, служб и поддерживаемых форматов. Открытые системы приобретают особое значение и масштабность в связи с бурным развитием технологий глобальных коммуникаций.

Свойства открытых систем:

Расширяемость/ масштабируемость;

Мобильность (переносимость) - простота переноса информационной системы на любую аппаратно-программную платформу, соответствующую стандартам;

Интероперабельность (способность к взаимодействию с другими системами);

Дружественность к пользователю, в том числе легкая управляемость.

Подход открытых систем обеспечивает преимущества для разного рода ИТ-специалистов. Для пользователя (заказчика) открытые системы обеспечивают:

Возможность постепенного наращивания вычислительных, информационных и других мощностей компьютерной системы (пользователи могут постепенно заменять компоненты системы на более совершенные);

Освобождение от зависимости от одного поставщика аппаратных или программных средств, возможность выбора продуктов из предложенных на рынке при условии соблюдения поставщиком соответствующих стандартов открытых систем;

Дружественность среды, в которой работает пользователь, мобильность персонала в процессе эволюции системы; возможность использования информационных ресурсов, имеющихся в других системах (организациях).

Проектировщик информационных систем получает возможность использования разных аппаратных платформ; возможность совместного использования прикладных программ, реализованных в разных операционных системах; развитые средства инструментальных сред, поддерживающих проектирование; возможности использования готовых программных продуктов и информационных ресурсов. Разработчики системных программных средств имеют: новые возможности разделения труда, благодаря повторному использованию программ; развитые инструментальные среды и системы программирования; возможности модульной организации программных комплексов благодаря стандартизации программных интерфейсов.

7.4.1.1. Модель взаимосвязи открытых систем (ISO/OSI)

Протокол - набор соглашений, принятый двумя взаимодействующими системами.

Интерфейс - набор соглашений, принятый двумя (или более) взаимодействующими элементами одной системы.

Открытые системы используют стандартные протоколы и интерфейсы. Особое значение подход открытых систем приобретает в случае сетевого взаимодействия.


Международная организация по стандартизации (ISO), основываясь на опыте многомашинных систем, который был накоплен в разных странах, выдвинула концепцию архитектуры открытых систем OSI - эталонную модель, используемую при разработке международных стандартов. Модель определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень.

Модель состоит из семи уровней (рис. 1.).

Открытой называется модульная система, которая допускает замену любого модуля на аналогичный модуль другого производителя, имеющийся в свободной продаже по конкурентоспособным ценам, а интеграция системы с другими системами (в том числе с пользователем) выполняется без преодоления чрезмерных проблем. Открытость можно рассматривать на разных уровнях иерархии программного и аппаратного обеспечения системы или ее составных частей. Открытыми, например, могут быть:

  • физические интерфейсы, протоколы обмена, методы контроля ошибок, системы адресации, форматы данных, типы организации сети, интерфейсы между программами, диапазоны изменения аналоговых сигналов;
  • пользовательские интерфейсы, языки программирования контроллеров, управляющие команды модулей ввода-вывода, языки управления базами данных, операционные системы, средства связи аппаратуры с программным обеспечением;
  • конструкционные элементы (шкафы, стойки, корпуса, разъемы, крепежные элементы);
  • системы, включающие в себя перечисленные выше элементы.

Как следует из определения, необходимыми условиями открытости являются:

  • модульность;
  • соответствие стандартам (необязательно официальным, но обязательно общепринятым и легко доступным по цене, компенсирующей только затраты на его разработку, поддержку и распространение);
  • наличие в свободной продаже аналогичных систем других производителей (подсистем, модулей) по конкурентоспособным ценам.

Требование модульности вытекает из требования возможности замены части системы (т. е. модуля) аналогичными изделиями других производителей. Для этого система должна состоять из модулей.

Соответствие стандартам необходимо для обеспечения совместимости.

Наличие в свободной продаже и конкурентоспособность цен являются требованиями, вытекающими из практического аспекта: без выполнения этого условия открытая система может существовать только "на бумаге".

Понятие открытости достаточно многогранно и не стандартизовано. Поэтому практически можно говорить только о степени открытости системы, указывая, что именно понимается под открытостью в каждом конкретном случае. Степень открытости можно оценить количеством реализованных признаков открытости.

Идеальным примером открытой системы является современный офисный компьютер. Огромное число производителей в разных странах изготавливают множество аппаратных и программных компонентов, которые можно собрать в единую систему, заменить один компонент на другой, нарастить функциональные возможности. Любой компонент можно найти по достаточно низкой цене; отсутствуют производители, которые могли бы диктовать монопольные цены.

В отличие от открытых, закрытые системы разрабатываются по внутренним стандартам отдельных предприятий. Части (модули) закрытых систем не могут быть заменены аналогичными изделиями других производителей, а заказчик, однажды применив закрытую систему, навсегда оказывается привязанным к ее разработчику.

Разновидностью и предельным случаем открытых систем являются системы, удовлетворяющие идеологии "Plug&Play" ("подключи - и играй"), когда вообще не требуется усилий для конфигурирования или настройки модулей после их подключения или замены на модули других производителей. Идеология "Plug&Play" существенно снижает требования к квалификации системных интеграторов, сокращает срок ввода системы в эксплуатацию, а также издержки потребителей на техническую поддержку и эксплуатацию.

Итак, предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом:

Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 1991. С. 140

Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки.

Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, - систем, способных к самоорганизации, саморазвитию.

Основные свойства самоорганизующихся систем - открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми, нелинейными диссипативными системами, далекими от равновесия.

Напомним, что объект изучения классической термодинамики - закрытые системы, т.е. системы, которые не обмениваются со средой веществом, энергией и информацией, а центральным понятием термодинамики является понятие энтропии.

Именно по отношению к закрытым системам были сформулированы два начала термодинамики. В соответствии с первым началом в закрытой системе энергия сохраняется, хотя может приобретать различные формы. Второе начало термодинамики гласит, что в замкнутой системе энтропия не может убывать, а лишь возрастает до тех пор, пока не достигнет максимума. Согласно этому началу, запас энергии во Вселенной иссякает, а вся Вселенная неизбежно приближается к «тепловой смерти». Ход событий во Вселенной невозможно повернуть вспять, чтобы воспрепятствовать возрастанию энтропии. Со временем способность Вселенной поддерживать организованные структуры ослабевает, и такие структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Это значит, что Вселенную ждет все более однородное будущее.

Вместе с тем уже во второй половине XIX в., и особенно в XX в., биология, прежде всего теория эволюции Дарвина, убедительно показала, что эволюция Вселенной не приводит к снижению уровня организации и обеднению разнообразия форм материи. Скорее, наоборот. История и эволюция Вселенной развивают ее от простого к сложному, от низших форм организации к высшим, от менее организованного к более организованному. Иначе говоря, старея, Вселенная обретает все более сложную организацию. Попытки согласовать второе начало термодинамики с выводами биологических и социальных наук долгое время были безуспешными. Классическая термодинамика не могла описывать закономерности открытых систем. Такая возможность появилась только с переходом естествознания к изучению открытых систем. Николис Г., Пригожин И. Познание сложного. М., 1990 С. 293

Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне и (или) стока вовне вещества, энергии или информации. Причем приток и сток обычно носят объемный характер, т.е. происходят в каждой точке данной системы. Так, во всех компонентах биологического организма происходит обмен веществ, приток и отток вещества. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных, неустойчивых состояний в противоположность замкнутым системам, неизбежно стремящимся к однородному равновесному состоянию.